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Abstract: Detecting Ineffective Efforts during Expiration
(IEE) in invasively ventilated neonates could help to improve
the ventilation process and lower the discomfort of the patient.
We propose an intrinsically explainable rule-based decision
tree to detect IEE in high-frequency airway flow data. The al-
gorithm is evaluated and compared to a previously developed
Long Short-Term Memory (LSTM) neural network. The deci-
sion tree achieves a lower yet comparable performance to the
LSTM, while being more stable during training and needing
considerably less time for fitting and inferring. Further, the de-
cision tree achieved good results on only 20% of the training
data, which in future could reduce annotation labor. Overall,
the results encourage us not to disregard rule-based algorithms
as outdated, especially when explainability is of importance
and annotated data is scarce and time-intensive to acquire.
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1 Introduction

During the mechanical ventilation of neonates different
patient-ventilator asynchronies (PVA) may occur. Ineffective
efforts during expiration (IEE) are such an asynchrony, in
which the patient’s inspiratory efforts during the expiration
phase are not detected and supported by the ventilator. Mul-
tiple occurrences of IEE are stressful for the patient and can
lead to a prolonged stay on the ICU [1]. A manual detection
is very time- and resource-intensive. Algorithms using ven-
tilator timeseries such as airway flow and pressure can de-
tect IEEs and monitor the amount of asynchronies. For adult
patients, various algorithms have been presented, employing
both rule-based methods [2, 3] and neural networks [3, 4]. For
neonates, however, considerably fewer algorithms are avail-
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able, such as [5, 6], both employing neural networks. The
choice between rule-based algorithms using knowledge-based
features and neural networks using learned features is some-
thing to consider when designing a new detection algorithm,
especially for a high-stake field, such as mechanical venti-
lation of neonates. For such an application, the explainabil-
ity and a good generalizability of the algorithm become ex-
tremely relevant. Intrinsically explainable algorithms, such as
rule-based or simpler machine learning algorithms are often
discarded as not being state-of-the-art, which is either moti-
vated by them being limited to expert knowledge or not be-
ing able to capture underlying processes well enough. In con-
trast, neural networks can uncover features embedded in the
data, yet they work as black-boxes. Further, the results of deep
learning heavily depend on the quality and quantity of the used
data. For neonatal applications, the data quantity itself repre-
sents a problem, as high-frequency ventilator data is scarce
and annotating it is a time-intensive process requiring quali-
fied medical staff.

In this paper, we propose a rule-based decision tree, which
combines domain knowledge-based features with a shallow
decision tree to form transparent rules for the detection of IEE
in invasively ventilated neonates. We evaluate and compare it
to a previously developed Long Short-Term Memory (LSTM)
neural network, trained on the same data. We employed mea-
sures for the classification performance, needed computation
time and needed amount of data. Our intent to do this com-
parison is to highlight the advantages and disadvantages of the
two methods, to encourage more careful considerations before
developing a new algorithm.

2 Methods

Previously presented rule-based algorithms [2, 3] were devel-
oped for adults. Due to the differences in the dynamics of
adult and neonatal ventilation data, the algorithms are not eas-
ily transferable. Therefore, we developed a new algorithm to
identify IEEs using airway flow measurements (125Hz) from
ten invasively ventilated neonates. The description of the used
data and its annotation can be found in the previous work on
the LSTM model [6]. The data set comprises 1,428 breaths ex-
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hibiting IEE and 1,237 non-IEE breaths (normal). The breaths
in the dataset vary greatly both in magnitude and duration.
To overcome these differences, the breaths were normalized
and resampled. Min-max normalization was applied, mapping
a breath’s flow to the interval [-7,1]. Resampling all breaths
to the same duration could distort the breath features. There-
fore, we plotted the breath durations as a histogram and iden-
tified four meaningful bins and corresponding durations (0.6s,
1.12s, 1.44s, 2.16s). A breath is then resampled to one of the
four durations depending on the bin it is in. Lastly, to avoid
noise being classified as an ineffective effort, the breaths were
smoothed using Gaussian smoothing with a factor of 0.8.

After preprocessing, we relied on domain knowledge to
extract features and form rules for the detection of IEE, the
entire pipeline being shown in Figure 1. Through consultation
with experts, we derived that in a normal breath the absolute
flow value after the peak expiratory flow (smallest negative
flow) would continuously decrease until it reaches zero. In
an IEE breath, the absolute flow value first decreases (often
faster than in a normal breath due to the inspiratory effort) and
then increases again as the remaining air is expired. Combin-
ing this theory with observations on the flow measurements,
we concluded that often there is no clear single decrease phase
followed by a single increase phase but rather that decreases
and increases may alternate. Therefore, we first identified the
peak expiratory flow and from that point on extracted from the
data the segments in which the absolute flow value increases
continuously. Decreases smaller than 0.5 ml/min are ignored
as measurement noise. Per extracted segment, we computed
the absolute flow increment, by subtracting the first flow value
from the last flow value. From the resulting segments and cor-
responding flow increments, we extracted and tested multi-
ple features. Plotting the feature values for the IEE and nor-
mal breaths as histograms, only two features distinguished the
classes meaningfully. The first feature represents the maxi-
mum of flow increment of all segments divided by the peak
expiratory flow, to obtain a measure of the ineffective effort’s
magnitude relative to the breath’s magnitude. The second fea-
ture is the sum of all computed continuous flow increments.

The two defined features were extracted from the anno-
tated breaths and used to form rules to discriminate between
IEE and normal breaths, by comparing the computed features
to thresholds. To adequately set the thresholds, we trained a
decision tree of depth two taking as input the two features and
used the breath annotations as labels. The train-test split of the
data was kept the same as for the previously developed LSTM
for better comparability. The resulting decision tree delivers
simple threshold-based rules to identify IEE breaths. The deci-
sion tree and its evaluation on two breaths are shown in Figure
1.
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3 Evaluation

In the following, we will present the measures used to evalu-
ate the presented rule-based decision tree and compare it to a
previously developed LSTM on the task of classifying breaths
as normal or IEE.

Classification performance. The results from both a 10-
fold cross validation and the evaluation of the best model from
the cross validation on the test data for the two algorithms are
given in Table 1. The LSTM outperforms the decision tree in
all metrics, both for the mean of the cross-validation and for
the best model evaluated on the test data. However, the vari-
ances of the metrics are lower for the decision tree than for the
neural network, except for the AUROC metric.

Execution time. We next compared the training and infer-
ence time of the two algorithms, performed on the same work-
station. The training and test data comprised 2,132 breaths
and 533 breaths, respectively. The decision tree trained for
0.004 seconds and had an inference time of 0.001 seconds.
The LSTM trained for 1,170.38 seconds and had an inference
time of 7.80 seconds. Thus, the mean inference time per breath
for the rule-based decision tree amounts to 1.87us and for the
LSTM to 1.15 * 10% us.

Training sample size. Lastly, we estimated the effect dif-
ferent training sample sizes have on the individual algorithms,
by fitting the algorithms on varying fractions of the training
set. For ten repetitions per fraction, we randomly sampled data
from the training set, using different seeds per sample but the
same set of seeds for both algorithms. When the fraction is
set to one, we cannot repeatedly resample, but rather train the
algorithm once on the entire train set. The resulting accuracy
using the full train set is lower than the accuracy reported on
the test data in Table 1, as the latter was obtained from the best
performing cross validation fold. The resulting accuracies per
fraction are shown in Figure 2. A clear difference is observed
between the performance of the decision tree and that of the
LSTM on smaller training sets. Considering the mean accu-
racy over the ten repetitions, the LSTM needed 60% of the data
to reach the same performance the decision tree achieved on
20% of the data. The confidence intervals for the decision tree
narrow down with increasing amount of training data, while
the LSTM does not have any consistent trend for the confi-
dence intervals.

4 Discussion

The rule-based decision tree’s classification performance was
outperformed by the LSTM. Specificity was the lowest metric
for both models, hinting at a high false positive value (many
normal breaths classified as IEE). The specificity should be
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Tab. 1: IEE classification performance comparison between rule-based decision tree and LSTM. The first two rows show the results
from the 10-fold cross validation (cv) and are given as mean =+ std. The second two rows (test) show the best performing model from the
cross validation evaluated on the test set.

Method Accuracy Precision Recall Specificity F1-Score AUROC
RB+DT (cv) 88.02 + 1.88 86.64 - 2.55 92.03 +2.55 83.33 £3.82 89.21+1.62 91.49 +2.19
LSTM (cv) 89.31 + 2.52 88.55+3.76 92.21 +3.48 85.96 +5.76 90.25+2.16 95.35+ 1.55
RB+DT (test) 90.67 87.42 96.52 83.88 91.75 90.20
LSTM (test) 92.12 92.36 93.01 91.09 92.68 97.40
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Fig. 1: Data processing pipeline traversed exemplary for an IEE
and a normal breath ending with the execution of the decision tree
on the extracted features.

Fig. 2: Accuracy achieved on training the decision tree and LSTM
on varying fractions of the training data given as mean and 95%
confidence interval (ci).

improved in future work, as it could lead to alarm fatigue
if IEE is repeatedly detected incorrectly. The decision tree
achieved lower variances for the measured metrics during
cross validation, which could imply that it generalizes bet-
ter and that the neural network might be overfit. Often hand-
engineered features are criticized for being potentially biased,
as they base on expert-knowledge. In this application, how-
ever, we noticed the opposite effect, probably due to insuffi-
ciently large sample size for the training of the LSTM. Overall,
considering the LSTM’s highly optimized weights and archi-
tecture, the rule-based decision tree was not consistently out-
performed by a high margin. Future work could consider an
ensemble approach combining the algorithms, as their wrong
classifications overlapped only partly. Previous comparisons
between a rule-based method and a convolutional neural net-
work for the detection of PVAs in adults [3], showed that the
rule-based algorithm could achieve a better performance than
the neural network. The exact approach was not transferable to
neonates, however, as the data used (pressure-volume loops)
do not exhibit the same dynamics for neonates as they do for
adults.

Regarding execution time, both algorithms are able to
classify a breath in a shorter time than the breath duration. The
decision tree was considerably faster, which could enable not

372



= C. Oprea et al., Comparing a rule-based decision tree to an LSTM network to detect IEE in neonates

only the inference on embedded hardware within a ventilator,
but also an on-the-flight adaptation of the algorithm on new
data. In previous work, a PVA detection algorithm has been
developed to produce detections while a breath is taken, for
immediate information [4]. This could also be achievable for
the presented decision tree, as a new maximal increase in flow
and the total increase in flow can be continuously computed
during a breath to detect an IEE, before the breath is finished.

The LSTM needed not only more time to train but it also
needed more data than the decision tree to achieve the same
performance. This increased need for data when training neu-
ral networks is well known, yet it is difficult to assess the exact
amount of data needed for a specific task. The work in [7] sums
up different recommendations for the amount of data a neural
network needs, varying from 10 times the number of weights
or 50-100 times the number of classes up to 10-100 times the
number of input features. Thus, the amount of available data
should be taken into consideration both for the development
and evaluation of a new algorithm.

Beyond the performance of the individual algorithms, we
stated that explainability is an important feature for algorithms
with applicability in a critical field. We consider the devel-
oped rule-based decision tree to be intrinsically explainable.
For each breath input it can deliver the two computed fea-
tures, an explanation on how they were computed, and show
which rules fired to reach a decision. For the LSTM, on the
other hand, we added attention layers to highlight the parts of
a breath important for the classification [6]. We evaluated the
explanations with a small user study, which showed that the
concept of attention-based visualizations was intuitive, how-
ever, single explanations were not always meaningful. We did
not perform a user-study to objectify the explainability of the
decision tree algorithm. This would be a valuable future task.

Lastly, we observed that in a few cases similar breaths
were annotated differently. While a neural network might try
and learn these discrepancies, a simpler rule-based algorithm
can be used to point these out. As the extracted features are
interpretable by humans, they can be leveraged as a tool to
gain insight on annotation quality.

5 Conclusion

A rule-based decision tree and an LSTM were compared on
the same task of detecting IEE in ventilated neonates using
high-frequency timeseries data. The comparison involved an
estimate on the models’ classification performance, their train-
ing and inference time as well as an analysis on their accuracy
depending on the size of the training dataset.

The superiority of the LSTM is marginal. It comes at the
cost of much higher computing load, the demand of at least
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three times more training data and a loss of transparency. The
choice of methods in applications must therefore rely on the
availability of annotated data, computing power and the de-
mand of acceptance from the group of users.

Outlook. An external evaluation of the two algorithms
could be a future task, to gain a better understanding on the
models’ generalization capabilities. Further, a user study could
be conducted on a head-to-head explainability comparison of
the two methods with different stakeholders. A more long-
term goal could be an in-depth analysis of model complexity
requirements, depending on the available data and the applica-
tion field.
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