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Abstract: Glaucoma is a leading cause of irreversible blind-
ness, requiring early detection to prevent vision loss. This
study evaluates non-linear machine learning (ML) models,
such as AdaBoost, for forecasting glaucoma stage, compar-
ing it to Logistic Regression (LR) using visual field data from
three independent cohorts (Bern, Rotterdam, Washington).
AdaBoost outperformed LR, achieving a kappa value of 0.85
(Bern) compared to 0.73 for LR. Notably, AdaBoost reached
an AUC ROC of 0.93 (early glaucoma, Bern), surpassing LR’s
0.47. Similar trends were observed across other datasets.
These results demonstrate the ability of non-linear ML models
to detect glaucoma progression, highlighting their potential to
improve early intervention and treatment planning.
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1 Introduction

Glaucoma, a leading cause of irreversible blindness, is charac-
terized by progressive optic nerve damage and peripheral vi-
sion loss [1]. Early progression detection is critical to prevent
significant vision impairment, as the disease often progresses
silently, with symptoms appearing only after substantial dam-
age [2]. The standard for assessing functional changes in glau-
coma is static automated perimetry, which maps a person’s vi-
sual sensitivity across the visual field (VF) [3]. However, dis-
tinguishing true disease progression from normal fluctuations
remains challenging, as no universally accepted definition of
progression exists. In this study, progression is defined as a
trend-based global measure, specifically the mean deviation
(MD) over time, which reflects the average sensitivity across
the VF, with lower values indicating worsening [4–6].

Clinically, glaucoma progression is often analyzed us-
ing linear regression models [7, 8], although alternative ap-
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Fig. 1: A VF represents a subject’s functional vision, measured at
59 test locations across the retina. Total deviation values, ranging
from -30 to 10 dB, indicate the difference in visual sensitivity at
each location compared to an age-matched healthy reference,
with lower values suggesting greater visual loss.

proaches such as robust regression, pointwise sensitivity anal-
ysis, and Bayesian models are increasingly being explored [9–
11]. These methods aim to predict progression at individual
VF locations. A related but simpler task—predicting the over-
all state of the glaucomatous eye—could still yield valuable
insights into disease progression and help identify individuals
experiencing rapid deterioration who may benefit from closer
monitoring [12]. Traditionally, this task has been addressed us-
ing linear models such as linear regression. However, linear
models are limited in their ability to capture the complex in-
teractions between VF locations and disease progression.

In this study, we compare non-linear models with tra-
ditional linear approaches and show that non-linear methods
provide more accurate forecasts of future glaucoma stages
based on prior VF data. These findings highlight the poten-
tial of non-linear models as more effective tools for glaucoma
monitoring.

2 Materials and Methods

Visual Field Data
We used three separate and independent cohorts, including:
– Bern dataset: 46,187 VFs from 9,869 subjects, collected

at Inselspital Eye Clinic (Switzerland). VFs followed the
G pattern (59 locations) using the OCTOPUS 900 Perime-
ter (Haag-Streit AG, Köniz, Switzerland).
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Dataset Device
No. No. Visual Age (Mean± SD MD (Mean± SD Glaucoma Staging Distribution (%)

Subjects Fields [Min, Max]) [Min, Max]) Earliest Early Moderate Advanced Severe End-stage

Bern OCTOPUS 900 8, 463 38, 832
57.49± 17.83 4.45± 5.61

8.09 57.92 17.95 9.76 5.6 0.68
[7.22, 95.57] [−9.20, 28.90]

Rotterdam
Humphrey Field

139 4, 572
64.24± 10.69 −9.35± 7.63

5.98 — 35.35 29.04 29.63 —
Analyzer II [25.75, 87.15] [−31.26,−0.01]

Washington
Humphrey Field

3, 867 28, 553
64.50± 14.46 −6.94± 6.18

— 52.56 30.28 11.61 5.55 —
Analyzer II [10.06, 90.00] [−32.95, 0.00]

Tab. 1: Summary of demographic of the datasets used in the study, including device type, number of subjects and VFs, age range,
mean deviation (MD) values, and distribution of instances per stage.

– Rotterdam dataset: 4,863 VFs from 139 subjects, col-
lected at Rotterdam Eye Institute (Netherlands) [14, 15].
VFs were measured with the 24-2 pattern (54 locations)
using the Humphrey Field Analyzer II (HFA, Carl Zeiss
Meditec AG, Jena, Germany).

– Washington dataset: 28,943 VFs from 3,871 subjects,
acquired by the University of Washington [16]. VFs were
measured with the 24-2 pattern (54 locations) using the
HFA (Carl Zeiss Meditec AG, Inc. Dublin, CA, USA).

The Rotterdam and Washington datasets are publicly avail-
able, while the Bern dataset was curated to exclude VFs with
false positive/negative rates over 30% or those not aligning
with glaucoma patterns (e.g., stroke). In the Bern dataset for
the OCTOPUS perimeter, MD values are inverted, with higher
positive numbers indicating greater visual impairment.

Glaucoma Staging
We applied the MD-based stage classification system by
Richard et al. [17], adapting it for HFA and OCTOPUS de-
vices (Table 2). It classifies severity from ocular hyperten-
sion (earliest glaucoma) to end-stage glaucoma. We excluded
stages from cohorts with fewer than 400 VFs to mitigate bi-
ases from low-participant numbers: end-stage glaucoma in
Bern and earliest-stage cases in Rotterdam. A summary of the
datasets is provided in Table 1.

Stage Description
HFA MD OCTOPUS MD

Score (dB) Score (dB)

0 Earliest > 0.00 ≤ −0.80

1 Early −0.01 to − 5.00 −0.70 to + 4.40

2 Moderate −5.01 to − 12.00 +4.50 to + 9.40

3 Advanced −12.01 to − 20.00 +9.50 to + 15.30

4 Severe < −20.01 +15.40 to + 23.10

5 End-stage — ≥ +23.20

Tab. 2: Glaucoma severity classification based on MD for HFA and
OCTOPUS perimeters.

Machine Learning Model and Baseline
This study focused in glaucoma progression by forecasting
the glaucoma stage, framing it as a multi-class classifica-
tion problem (stages 0–4). We construct triplets from subjects
with at least three visits, sequentially forming triplets for each
dataset: 15,725 (Bern), 4,021 (Rotterdam), and 13,848 (Wash-
ington). The average time between VFs was 0.91±1.71 (Bern),
0.56± 0.20 (Rotterdam), and 1.30± 1.05 years (Washington),
with triplet windows of 1.78±2.14, 1.12±0.28, and 2.67±1.73

years, respectively.
Our goal was to predict the stage of the third VF test using

data from the first two. To this end, we trained an AdaBoost
model [18] using total deviations (Figure 1) from the first
two VFs, along with the subject’s age as input features. Each
dataset was split into five subject-exclusive folds (80% train-
ing, 20% testing). Logistic Regression (LR) served as a linear
benchmark for comparison.

Given that a majority of cases remain stable over time,
we also included a no-change classifier in our evaluation. This
baseline model assumes no change in disease stage and simply
assigns the future stage to match that of the last available VF.
Comparing AdaBoost and LR against this baseline provides a
clinically meaningful reference point for assessing model per-
formance [13].

Model performance was evaluated using Cohen’s kappa,
which accounts for class imbalance and ranges from −1 (com-
plete disagreement) to 1 (perfect agreement) [19]. Addition-
ally, we report the Area Under the Curve (AUC) for both
the Receiver Operating Characteristic (ROC) and Precision-
Recall (PR) curves.

3 Results

Kappa values from 5-fold cross-validation are used to compare
the performance of AdaBoost, LR, and the no-change clas-
sifier across all datasets (Table 3). Results are presented for
all cases and separately for progressed, stable, and improved
cases, with progression defined as a higher VF stage, stability
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as no change, and improvement as a lower stage compared to
the last available VF.

Dataset Category AdaBoost
Logistic No-change

Regression classifier

Bern

All 0.85± 0.02 0.73± 0.05 0.87± 0.02

Progressed 0.63± 0.03 0.55± 0.01 0.52± 0.02

Stable 0.94± 0.02 0.81± 0.01 1.00± 0.00

Improved 0.63± 0.02 0.58± 0.02 0.59± 0.03

Rotterdam

All 0.86± 0.00 0.85± 0.05 0.89± 0.01

Progressed 0.51± 0.07 0.34± 0.04 0.30± 0.01

Stable 0.94± 0.01 0.88± 0.03 1.00± 0.00

Improved 0.52± 0.02 0.39± 0.06 0.33± 0.02

Washington

All 0.85± 0.01 0.76± 0.01 0.84± 0.00

Progressed 0.49± 0.02 0.43± 0.02 0.39± 0.01

Stable 0.95± 0.00 0.87± 0.01 1.00± 0.00

Improved 0.57± 0.03 0.49± 0.04 0.42± 0.02

Tab. 3: Mean ± SD of Cohen’s kappa metric across 5 folds for
AdaBoost, Logistic Regression, and the no-change baseline, strat-
ified by dataset and progression category.

The AUCs of the models across stages and datasets, using
5-fold cross-validation with a one-vs-rest approach, are also
compared (Table 4).

Using the AUROC values, we analyzed the performance
of AdaBoost and LR models at each glaucoma stage for a
unique fold, focusing on instances of progression (Table 5).
Cases with stage transitions of more than one stage were ex-
cluded from the analysis due to their low occurence in the
dataset.

AUC ROC AUC PR

Stage AdaBoost
Logistic

AdaBoost
Logistic

Regression Regression

B
er

n

0 0.930± 0.006 0.467± 0.014 0.611± 0.025 0.096± 0.006

1 0.907± 0.004 0.773± 0.007 0.891± 0.007 0.700± 0.010

2 0.879± 0.006 0.826± 0.007 0.612± 0.017 0.485± 0.016

3 0.935± 0.005 0.883± 0.007 0.647± 0.020 0.384± 0.019

4 0.977± 0.004 0.948± 0.004 0.817± 0.0018 0.471± 0.030

R
ot

te
r d

am 3 0.960± 0.005 0.959± 0.005 0.948± 0.007 0.880± 0.021

4 0.852± 0.011 0.913± 0.009 0.647± 0.027 0.851± 0.019

5 0.938± 0.008 0.973± 0.006 0.903± 0.012 0.964± 0.006

W
as

hi
ng

to
n 1 0.945± 0.003 0.899± 0.005 0.928± 0.006 0.855± 0.010

2 0.875± 0.006 0.797± 0.007 0.754± 0.013 0.617± 0.014

3 0.929± 0.006 0.880± 0.006 0.702± 0.022 0.379± 0.016

4 0.970± 0.005 0.946± 0.005 0.835± 0.020 0.400± 0.027

Tab. 4: Mean ± SD of AUC for ROC and PR curves over 5 folds,
reported per stage using a one-vs-rest setup.

AdaBoost Logistic Regression

B
er

n

0.65 0.64 0.50 0.51 0

S
ta

rt
in

g
S

ta
ge

0.84 0.72 0.83 0.44 0.56 0.73 1

0.78 0.60 0.76 0.64 0.62 0.68 2

0.70 0.61 0.71 0.67 0.59 0.64 3

0.78 0.76 0.41 0.52 4

R
ot

te
rd

am 0.86 0.86 0.85 0.85 2

0.84 0.69 0.79 0.74 0.62 0.76 3

0.85 0.89 0.75 0.75 4

W
as

hi
ng

to
n 0.78 0.78 0.68 0.69 1

0.82 0.69 0.82 0.73 0.58 0.74 2

0.77 0.67 0.70 0.67 0.56 0.56 3

0.78 0.79 0.33 0.57 4

0 1 2 3 4 0 1 2 3 4

Ending Stage

Tab. 5: Stage-wise comparison of AUROC for glaucoma stage
prediction using AdaBoost and Logistic Regression. Each cell rep-
resents the AUROC for predicting a transition from a given starting
stage (based on the second VF) to a future stage (the third VF).
Rows correspond to starting stages, columns to predicted ending
stages. Clinically relevant progression cases are highlighted in
bold. Empty cells indicate transitions with insufficient samples to
compute reliable metrics.

4 Discussion

This study evaluates the potential of non-linear models in fore-
casting glaucoma stage. As shown in Table 3, AdaBoost con-
sistently outperforms LR across all datasets, achieving higher
kappa values. In both the Bern and Washington datasets, Ad-
aBoost shows a significant improvement over LR. More im-
portantly, in the progressed cases, AdaBoost demonstrates a
clear advantage, outperforming LR by a clear marging.

AUROC and AUC PR results (Table 4) further confirm
AdaBoost’s performance, maintaining AUROC values above
0.85 across all datasets—exceeding the threshold for clinically
meaningful classification [20]. In particular, for early-stage
glaucoma in Bern, AdaBoost shows an improvement of over
0.4 points in AUROC compared to LR, while for advanced
glaucoma in Washington, AdaBoost achieves an improvement
of approximately 0.3 points in AUC PR over LR.

Additionally, Table 5 highlights AdaBoost’s superior per-
formance in predicting glaucoma stage transitions, particularly
from stage 1 to 2 in the Bern dataset and from stage 3 to 4 in
the Washington dataset. In contrast, in the Rotterdam dataset,
where the data is more structured and short-term, both models
perform similarly, suggesting that LR may still be a reliable
choice in controlled environments. These results emphasize
AdaBoost’s potential for more accurately predicting glaucoma
progression in real-world clinical settings.
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The no-change classifier served as a baseline to evaluate
model performance in progressed cases. As shown in Table 3,
non-linear models achieve higher kappa values in progressed
cases, where accurate detection is most critical. This base-
line demonstrates that non-linear models fit better progression
trends as compared with linear models.

We acknowledge the limitations in our study. The lack
of longitudinal subject history prevents evaluating the ef-
fect of additional visits on predictions. The Bern dataset is
missing exact diagnostic information, possibly including non-
glaucoma subjects, and none of the datasets contain treatment
details, which could influence disease progression. Addition-
ally, the rigid staging system may exaggerate minor changes,
occasionally suggesting improvements. However, this simpli-
fication helps evaluate non-linear models in detecting progres-
sion. While glaucoma staging is ordinal, our approach assumes
equal stage intervals, which may not fully align with clinical
reality. Still, the results highlight the potential of non-linear
models in capturing disease progression.

In conclusion, non-linear models show promise in detect-
ing glaucoma progression more effectively than linear models,
potentially aiding earlier intervention. This could help opti-
mize follow-up schedules and prioritize high-risk subjects.
Future work should address current limitations by incorpo-
rating more diagnostic data, and treatment information to
enhance predictive accuracy.
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