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Abstract: Deep learning methods are increasingly used in
clinical artificial intelligence (AI) research, including for de-
tecting anomalies in intensive care data. However, their eval-
uation often depends on human annotations, which can vary
in quality and consistency. In this study, we analyse the effect
of annotation variability on the performance of DeepAnT, an
unsupervised convolutional neural network for anomaly de-
tection (AD). Using intensive care time-series data from 38
patients for training and six patients separately annotated for
evaluation, we compare F1 scores based on two independent
physician annotations. Our results show differences in model
performance across different vital parameters, between pa-
tients, and especially between annotators evaluating the same
data. These findings indicate that human labelling has a mea-
surable impact on the perceived performance of the AD al-
gorithm. Structured labelling protocols may be beneficial for
achieving more consistent and reliable evaluations.

Keywords: Artificial Intelligence, Data Quality, Human An-
notations, Anomaly Detection

1 Introduction

The use of artificial intelligence (Al) in clinical settings has
increased substantially in recent years, particularly in inten-
sive care units (ICU) where continuous monitoring generates
large amounts of time-series data. An application of Al in
this context is anomaly detection (AD), the automated iden-
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tification of abnormal data points that may indicate sensor
malfunction, data artefacts or clinically relevant events. Deep
learning models have shown great potential in detecting such
anomalies, especially in univariate or multivariate vital param-
eter recordings [1]. However, AD models are often based on
human-created labels for assessment and, depending on the
model, also for training. In the clinical setting, annotations
are typically created by physicians can distinguish between
e.g. physiological abnormalities and technical artefacts such
as sensor dislocation or signal loss. These annotation tasks are
not only time-consuming, but also prone to subjective inter-
pretation, differing levels of clinical experience, and the ab-
sence of standardised labelling protocols [2]. As a result, both
inter-individual inconsistencies (i.e. differences between an-
notators) and intra-individual inconsistencies (e.g. variations
in how a single annotator labels similar data) can affect the
quality and consistency of the resulting labels and thus the
evaluation of AD models. While previous research has inves-
tigated various algorithmic approaches to detecting anomalies
in time series data [3], the influence of the quality of human an-
notations on model performance has not yet been sufficiently
investigated. This is particularly problematic when such anno-
tations serve as the ground truth for performance metrics such
as precision, recall or F1 score.

In this study, we aim to assess the impact of annotations
variability on the performance of a deep learning-based AD
model, DeepAnT [4], applied to real patient data from inten-
sive care units. We investigate how the model’s F1 scores differ
when evaluated on annotations from two independent physi-
cians, and how these deviations are reflected in different pa-
tients and vital parameters.

2 Related Work

For a better understanding of how our study contributes to this
area, we want to review the existing work related to AD in
ICU data, as well as research on the impact and variability of
human annotations in clinical AI. AD is a widely researched
topic and is applied in many domains. Chandola et al. de-
scribe various applications in which AD is used [5]. These
include intrusion detection to monitor network traffic and im-
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prove cyber security, fault detection in safety-critical systems,
and credit card fraud detection. In addition, numerous sum-
maries of state-of-the-art AD algorithms for univariate and
multivariate time series data are presented by other authors.
Specifically, Zamanzadeh et al. provide an extensive review
of AD models, focusing on architectures, methodological ap-
proaches, and the availability of implementations [3]. Munir
et al. compared 13 AD methods [1] using two benchmark data
sets: Yahoo Webscope [6] and NAB [7], which contain time se-
ries from areas such as transport and cloud computing. Among
the evaluated methods, the deep learning models FuseAD [8]
and DeepAnT [4] performed the best. Although the use of AD
has been growing in various fields, its application in the med-
ical field, especially in ICU datasets, remains limited. One of
the few examples is presented by Salem et al., who proposed a
kernel density-based distance measure to detect point anoma-
lies in multivariate medical time series without requiring prior
knowledge of future data points [9]. Their method demon-
strated high performance when evaluated on the MIMIC-III
dataset [10], achieving a sensitivity of 100% and specificity of
94.5%. However, their approach does not rely on deep learn-
ing techniques, nor does it incorporate physician-annotated
ground truth. Based on the promising results of Munir et al.
and the current lack of deep learning-based AD studies on ICU
datasets, we chose to apply DeepAnT to this domain. To our
knowledge, this represents one of the first attempts to analyse
ICU time series data using DeepAnT, with a focus on how an-
notation quality affects model performance. Annotation qual-
ity is especially important for clinical Al, as shown by Sy-
lolypavan et al. [2]. In their study, 11 ICU physicians anno-
tated clinical cases individually, and separate machine learn-
ing models were trained on each annotation set. The results
showed significant variation in model outputs that was solely
due to labelling inconsistencies. This work illustrated the chal-
lenges of assuming that a single set of annotations represents a
definitive truth and called for more structured and transparent
annotation processes.

Given the findings by Sylolypavan et al., we aim to ex-
plore whether similar effects can be observed when using deep
learning-based AD on ICU time series data. Specifically, we
investigate how differing annotations by two physicians influ-
ence the evaluation of DeepAnT, and to what extent these in-
consistencies affect the interpretability and trustworthiness of
model outputs.

3 Methods

The data used in this study were provided by the RWTH
Aachen University Hospital (UKA). It consists of ICU records
collected between 2007 and 2019. For each patient, several vi-
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tal parameters were continuously monitored during their stay
in the ICU. From the available parameters, we selected eight
vital parameters (as listed in Table 1) for further analysis.
These parameters were chosen because of their high data den-
sity, making them particularly suitable for data-driven AD ap-
proaches. To identify anomalies in the time-series data, we
used DeepAnT [4], designed for AD in both univariate and
multivariate time series data. The model predicts future values
based on past input windows. One of DeepAnT’s key strengths
is its robustness: it is able to learn effectively even when the
training data contains anomalies, as these do not significantly
affect the model’s learning process. This is particularly useful
considering that many AD approaches rely on learning a rep-
resentation of the normal state of the data in order to identify
deviations. Furthermore, it can produce reliable results even
when trained on relatively small datasets [4].

In our study, DeepAnT was trained univariately with data
from 38 patients. This means that a separate model was trained
for each of the eight selected vital signs. The total number of
training data points for each model is listed in Table 1. For the
validation phase, we used data from an additional six patients.
Both datasets were independently annotated by two physicians
(physician A and physician B). The annotations focused on
identifying non-physiological anomalies such as sensor fail-
ures, dislocated sensors and other artefacts that could affect
the quality of the data. We calculated the F1 score to evaluate
the correspondence between the anomalies detected by Deep-
AnT and the annotations created by the physician. This metric
provides a balanced measure of precision and recall and allows
a comparison between the model result and the ’ground truth’
created by humans.

Tab. 1: Overview of vital parameters, their acronyms and total

number of training data points from 38 patients for the selected
CNN.

Vital Parameter Acronym  Number of training

data points

Central Venous Pressure CVP 117,014
Heartrate HR 2,369,220
Respiratory Rate RR 1,816,632
Oxygen Saturation Sa02 2,052,516
Temperature TempC 217,564
Diastolic Pressure pDi 348,813
Mean Arterial Pressure pMe 350,517
Systolic Pressure pSy 348,807

4 Results

The evaluation of DeepAnT’s performance was conducted on
data from six ICU patients, using a physician’s annotations as
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a reference. Table 2 presents the F1 scores achieved by Deep-
AnT across all eight selected vital parameters for each patient.
For this evaluation, annotations from physician A were used as
the basis for comparison. The table shows a wide range of F1
scores, with notable differences not only between vital param-
eters, but also between patients. In cases where no F1 score is
reported, the parameter was not recorded for that patient.

A closer look at the parameter-wise performance shows
that TempC consistently achieved high F1 scores, ranging from
60.7 to 100% across all six patients. This suggests that Deep-
AnT is particularly effective at detecting anomalies in temper-
ature data. In contrast, other parameters showed more variable
results.

Patient-wise variation in model performance was also ob-
served. For example, Patient 2 consistently achieved F1 scores
above 72.3%, with SaO2 reaching the maximum score of
100%. This contrasts with other patients where scores were
significantly lower in some cases and more heterogeneous
across the different parameters.

To further investigate the impact of human annotation on
model performance, we repeated the analysis for selected pa-
tients using the annotations provided by physician B. These
results are summarised in Table 3. In addition to the F1 scores,
the table also includes the number of anomalies annotated by
each physician for every vital parameter. Here, we observed
significant differences in the F1 values for the same data when
we compared the model results with the two independent an-
notations. These variations can be partly explained by large
differences in the number of labelled anomalies. For instance,
in Table 3 (a), physician A annotated 29 anomalies in the pa-
rameter pSy, while physician B annotated 68. In contrast, for
patient 2 in the parameter SaO2, both physicians identified
the same single anomaly, resulting in perfect agreement and
a maximal F1 score.

These findings show the importance of annotation consis-
tency and the influence that subjective labelling can have on
the evaluation of AD algorithms.

Tab. 2: F1 Scores of DeepAnT for each patient and vital parame-
ter (evaluated with Physician A’s annotations).

Pat. 1 Pat. 2 Pat. 3 Pat. 4 Pat. 5 Pat. 6
CVP - - 0.944 0.250 - 0.750
HR 0.244 0.800 0.500 0.385 0.440 0.326
RR 0.333 0.723 0.540 0.089 0.540 0.491
Sa02 0.279 1.000 0.407 0.800 0.407 0.475
TempC  0.607 0.920 0.738 1.000 0.611 0.783
pDi 0.520 0.889 0.720 0.508 0.947 0.628
pMe 0.472 0.857 0.824 0.552 0.762 0.434
pSy 0.419 0.750 0.533 0.359 0.543 0.387

Tab. 3: Comparison of F1 scores of and the number of annotated
anomalies between physician A and B for patient 1 (a) and 2 (b).

(a) Patient 1

HR RR Sa02 TempC pDi pMe pSy

A 0244 0.333 0.279 0.607 0520 0472 0.419
35 21 30 61 32 43 29

B 0.417 0.167 0.480 0.656 0.500 0.488 0.275
22 15 12 51 25 28 68

(b) Patient 2

HR RR Sa02 TempC pDi pMe pSy

A 0800 0.723 1.000 0.920 0.889 0.857 0.750
12 39 1 147 14 33 15

B 0570 0.600 1.000 0.916 0.636 0.471 0.571
2 6 1 128 14 9 6

5 Discussion

The results presented in this study show that the evaluation
of the AD performance of DeepAnT is highly dependent on
the quality and consistency of the underlying human annota-
tions. For the six ICU patients analysed, we observed signifi-
cant variations in F1 values depending on the vital parameters
and the specific patient data set. For example, parameters such
as TempC consistently achieved high F1 scores, while others
showed much greater variability. Similarly, some patient data
sets consistently performed better, suggesting differences in
data quality or clarity of annotations.

In addition, comparing results based on two independent
physician annotations for the same patient showed consider-
able differences. In some cases, the F1 scores differed signif-
icantly between the two sets of annotations, despite the un-
derlying data remaining unchanged. Similar to the study by
Sylolypavan et al. [2], we were able to demonstrate the influ-
ence that subjective human annotations can have on model per-
formance and point to the need for structured or standardised
annotation protocols. Without such consistency, comparisons
between models or general conclusions about performance be-
come questionable, especially if the evaluation is based on po-
tentially erroneous or inconsistent labels.

These results highlight a problem in clinical Al research:
while attention is paid to algorithmic improvements, the foun-
dations of the evaluation, namely the annotation process, are
often insufficiently investigated. For AD models to be mean-
ingfully validated, the annotation process must be approached
with the same care as the model development itself. This in-
cludes establishing an initial consensus among annotators re-
garding annotation criteria and thresholds for anomalies. Ide-
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ally, the annotation process should begin with a learning phase,
in which annotators align their understanding and interpreta-
tions before independently labelling datasets. If adjustments or
refinements to the annotation strategy are required over time,
these should be made through clearly documented and trace-
able iterations to avoid subsequent bias.

5.1 Limitations

One of the main limitations of this study is the small sample
size of the datasets that were tested. Due to the limited avail-
ability of annotated ICU data, only six patient data sets were
available for evaluation, which limits the generalisability of
the results. Furthermore, only two annotators were involved in
the labelling process. To better assess the agreement between
annotators and to reduce individual bias, at least three annota-
tors would be preferable, enabling pairwise comparisons such
as B and C against A. Ideally, even more annotators should be
involved to gain a better understanding of the variability of the
annotation.

In addition, our analysis focused exclusively on the Deep-
AnT architecture. While this model proved to be viable in the
context of univariate AD, it remains unclear whether the ob-
served annotation sensitivity can be transferred to other archi-
tectures or multivariate settings. Future work should therefore
include a wider range of models and more extensive data sets.

Another limitation is the unavailability of the inten-
sive care data used in this study for external validation. Al-
though we intend to make the annotations available for public
datasets, this has not yet been realised.

6 Conclusions

In this study, we investigated the influence of human annota-
tion on the performance evaluation of a deep learning-based
AD algorithm on ICU time series data. By comparing the F1
scores of DeepAnT across different patients, vital parameters
and independent physician annotations, we demonstrated that
the quality and consistency of the labels have a significant im-
pact on the resulting performance metrics.

Our results highlight an underestimated aspect of clini-
cal research. The evaluation of model performance is only as
reliable as the annotations on which it is based. Differences
between annotators can lead to significant variations in per-
ceived model quality, directly affecting model benchmarking,
validation, and potential clinical use. To improve the reliabil-
ity of such assessments, structured and standardised annota-
tion protocols could be created. The involvement of a larger
number of annotators and the implementation of consensus-
building strategies can help to reduce individual bias. Further-
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more, Al-supported labelling approaches such as active learn-
ing or semi-supervised methods could serve as powerful tools
to support physicians and improve labelling consistency while
reducing the manual workload.

Future work should aim to increase both the number of an-
notated data sets and the number of AD models examined. Fur-
thermore, making annotated data sets publicly available could
increase reproducibility and enable the development of a com-
mon annotation structure.
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