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Abstract:
medicine and cancer treatment research is expensive. Large

Screening of cancer drugs in personalized

libraries of compounds must be evaluated, and multiple doses
for each compound need to be tested to assess their viabil-
ity. We introduce a method exploiting cost-aware Gaussian
process Bayesian optimization to reduce the number of ex-
periments and amount of compound spent in screening. The
method is utilized to iteratively find suitable medication doses,
while staying within a predefined budget. Our approach is val-
idated using synthetic data, and subsequently tested using ex-
perimental data.

Keywords: drug screening, Gaussian process Bayesian opti-
mization, cost-aware optimization

1 Introduction

In personalized medicine and cancer treatment research, iden-
tifying effective drugs and their optimal doses is expensive
and time-consuming due to the high costs associated with tra-
ditional high-throughput screening (HTS) techniques. These
techniques typically require substantial resources, and are ac-
cessible only to large pharmaceutical companies and ma-
jor research centers [1]. Additionally, determining appropri-
ate drug concentrations often involves testing multiple doses
on patient-derived cancer cells, further escalating costs and
complexity. Consequently, developing methods to substan-
tially lower these costs democratizes access to advanced drug
screening technologies, making them more accessible across
diverse laboratories and research institutions. Furthermore,
patient-derived cells are scarce and must be used effectively.
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Experimental innovations such as droplet microarrays
(DMA) address these challenges by offering high-throughput
capabilities at a substantially reduced scale. DMAs utilize a
flat, wall-less design combined with extreme wettability con-
trast, allowing the formation and manipulation of thousands of
nanoliter-scale droplets [2]. This approach drastically reduces
sample sizes and drug volumes required for testing, enabling
the use of volumes 100 to 1000 times smaller than those re-
quired by conventional platforms [3]. It is used for comprehen-
sive testing across diverse biological systems including stan-
dard cell lines [4], spheroids [5], and patient-derived cancer
cells [6, 7] with automation often facilitating subsequent anal-
ysis [8]. However, conventional-scale experiments for confir-
mation of DMA screening results and high-throughput screen-
ings covering large compound libraries are still costly.

To reduce these costs at both small and large experiment
scales, we introduce a method utilizing cost-aware Gaussian
process Bayesian optimization (GPBO) to efficiently discover
cancer medication dose-response curves. Our method itera-
tively identifies promising concentrations from initial exper-
iments, driving subsequent trials. In short:

—  The method is described in detail.

— Itis validated using synthetic dose-response curves mod-
eled after experimental data.

— It’s viability is shown using experimental data from prior

drug screenings on DMA platforms [9].

2 Method

Our cost-aware GPBO-based method exploits a simple, yet
powerful concept: only perform experiments expected to pro-
vide insight. The initial step is sampling a small amount (2-3)
of very low concentrations for a compound, and measuring cell
viability after performing the trials. From these experiments at
low concentrations, the cost-aware GPBO algorithm is utilized
to iteratively minimize cell viability. At each step, it suggests
candidate concentrations, and cell viabilities are measured af-
ter performing the corresponding experiments. This process
repeats until the budget of compound (and trials) is exceeded.
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Fundamentally, GPBO is an iterative method consisting
of two parts. Each iteration begins with modeling the existing
data using a probabilistic regression model (a Gaussian pro-
cess or GP). Subsequently, a strategy (called acquisition func-
tion) is used to query this model and identify the next gener-
ation of inputs for the experiment. Commonly used strategies
balance exploration of the parameter space and exploitation
of regions with desirable values. The algorithm is made cos?-
aware by utilizing an acquisition function biasing the selection
of concentrations to those with lower-cost. In each iteration,
the bias changes to account for previously spent budget.

The method is composed of the following steps:

1. Decide on a budget of compound and setup effort 7.

Perform an initial set of (cheap) tests at low doses.

3. Use a Gaussian process to approximate the dose-response
curve from the current set of experiments.

Optimize the cost-aware acquisition function to produce
concentrations leading to lower cell viabilities.

5. Stop iterating if the budget would be exceeded in the next

trial. If not, perform the experiment and go to step 2.

Since the last step entails stopping the iteration if the budget is
exceeded, the budget may not be fully exploited.

Technical Details

To model the dose-response curve in step 3 of the algo-
rithm, we utilize a GP with a Matérn 5/2-Kernel. Inputs
into the model are the normalized log-concentrations of the
compounds, and outputs are the standardized cell viability
scores. Bayesian optimization is implemented using the Sin-
gleTaskGP model, acquisition functions, optimization and fit-
ting routines provided by BoTorch [10]. The cost-cooling ex-
pected improvement acquisition function EI-cool [11] is uti-
lized to account for costs while identifying concentrations for
the next experiment. It attenuates expected improvement us-
ing a power « of the cost C of performing an experiment. «
encodes the currently available and total available budget

(1

o= (T - Tused) / (T - Tinil) .
—_——

current total

Here, 7 is the budget, 7i,; is the budget used in the initial
experiments, and 7ysq the budget used so far. For numerical
stability and noise tolerance, we adapt their definition to use

BoTorch’s qLogNoisyExpectedImprovement (qLogNEI)
EI-cool(c) = qLogNEI(log c) — log (C(c)%). 2)

We utilize a linear cost model C of the compound concen-
trations ¢, with the price of compound p and k related to the
concentration-independent effort of experiment setup

C(c) =pc+k. (3)
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In our experiments, we set p = 1.0 and k£ = 0.15. This corre-
sponds to the setup effort & of a single experiment being 15 %
of the cost of a 1 uM dose of compound. While keeping the
budget fixed, p and k allow tuning of the method’s behavior.

3 Experiments and Discussion

Synthetic Data
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Fig. 1: Example for synthetic dose-response curve generation.
The viabilities v; and v, are limits of viability at the left and right
edge of the curve, and the concentrations z; and z; can be used
to set the log concentrations where the viability is at the 1 and 99
% marks between v and vy.

First, the method is validated using synthetic dose-
response curves V. They are generated using shifted and scaled
sigmoid functions o of the concentration ¢ and Gaussian noise
N with standard deviation d

V(c)/% viability = v} + o (zs(c)) (vr — v1) + N (0, d)

_ logc — xr

“

with zs(c) S

(00.99 — 00.01) + 00.01-
I — Tr

We used d = 10 % viability to emulate experimental noise.

Values for V(c) are clipped in the interval [0, c0). 00.01
and og g9 are inputs at which the sigmoid function o reaches
0.01 and 0.99, respectively. V interpolates the viabilities v; and
ur using a sigmoid shape. x| and z; mark the log concentra-
tions where the function reaches the 0.01 and 0.99 interpo-
lation points between v; and vr (v; and vy are only reached
asymptotically) Figure 1 shows an example synthetic curve.
To produce all used curves are plotted in Figure 2, zy, xr, y
and y; are sampled uniformly from the ranges in Table 1.

We chose sampling at the fixed concentrations used for
Dasatinib in Popova et al. [9] as a baseline. The budget con-
sumed by the baseline was computed using (3), and summing
across all trials. Our method’s budget is restricted to 25 %
of the baseline’s budget, since multiple repetitions were per-
formed for each concentration. This means that the method
could in theory sample each concentration only once, instead



Parameter min max unit
xz -75 -05 loguM
z -15 55 log uM
y 925 975 %
y 25 7.5 %

Tab. 1: Parameter ranges for synthetic data generation.

100 ~

75

Viability v / %

-1
log (concentration / uM)

Fig. 2: All synthetic dose-response curves used for validation. Two
example curves are highlighted in orange and red.

of the four repetitions in the baseline. For each synthetic dose-
response curve, the initial concentrations were set to log ¢ =
—5 and logc = —4. From these points, the algorithm is run
to iteratively produce sample concentrations. Once the bud-
get is exhausted, V(c) (see Equation (4)) is fit to the sample
points. It’s shape is compared to the true dose-response curve
by computing the average squared difference at 100 regular
log concentrations on the interval [—5, 2]

100
£= 1 > 0@ V) ©

Across all 100 samples, our method achieved a lower
mean £ of 87.5, while the baseline method achieved mean
& = 171.9. GPBO-assisted sampling on average utilizes 8.6 %
of the budget of the baseline method. Thus, our model pro-
duced better fits of the true dose-response curve on average,
while utilizing a fraction of the baseline’s budget.

An example application of our method and the baseline to
synthetic data is shown in Figure 3. The GPBO-method sam-
ples fewer locations, preferentially at lower concentrations,
and utilizes 1.9 % of the baseline’s budget. The method can
be biased to produce more or fewer samples by increasing the
setup effort & while keeping the budget constant.

Experimental Data

We utilize drug screening data of Dasatinib and Vorinostat
on HeLa cells, using Resazurin as an indicator, as presented
in Popova et al. [9], to test our method. The precise dose-
response curves for the drugs is unknown. While the data ob-
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Fig. 3: Example fit produced by the GPBO-method compared to
the baseline fit. It produces a better fit, while utilizing 1.9 % of the
baseline’s budget.

tained from the screenings approximates it, it cannot be used
as ground truth. Acquiring a precise estimate would require
many more experiments, which would incur large costs at this
early stage of the method’s development. Therefore, we ver-
ify our method using a different scheme compared to the syn-
thetic data. The acquisition function is evaluated discretely for
all possible inputs in the dataset, and promising concentrations
are selected from these discrete values. The two smallest con-
centrations for each compound are used as initial concentra-
tions, and the algorithm is run with of 75 % of the reference
experiment’s budget. Sigmoid functions are fit to all sample
points and those selected by our method separately. These fits
and the corresponding concentrations with 50 % cell viabil-
ity (ICsp-values) are compared. To increase fitting stability, vy
was fixed at 0.0 % viability for this experiment, encoding the
assumption that all compounds kill all cells at sufficiently high
concentrations. Even when using all points for curve fitting,
we are not able to reproduce the values obtained by Popova et
al. [9]. The optimization algorithm used by OriginPro in their
work may differ from our scipy-based [12] solution.

Vorinostat: ICso =2.38
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Fig. 4: Our method applied to the experimental data for Vorinostat.

Our method’s fit is close to the full fit, and the difference in IC5¢
between the two is small.
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Figure 4 shows the model applied to the data for Vorino-
stat. Here, a good fit to the original function was achieved,
while utilizing approximately 73 % of the budget. The pro-
duced ICsqg-value is close to the full fit (2.38 uM vs 2.55 uM).
Figure 5 shows the fit for our method compared to the fit using
all datapoints for Dasatinib. Our method used approximately
72 % of the budget. Here, differences to the full fit can be ob-
served, and arise from to the reduction in budget and restric-
tion of the method’s sampling points. These experiments show
that even in a reduced context, our method produces sensible
sampling points. It achieves results similar to the full samples
while reducing budget. However, high noise and strong restric-
tions on the sampling points impact model performance.

Dasatinib: 1Cso =10.82
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Fig. 5: Our method applied to the experimental data for Dasatinib.
It used approximately 72 % of the budget, and found IC5¢ = 10.82
compared to the full fit at IC5o = 21.24.

4 Conclusion

We introduce a method to efficiently determine dose-response
curves using cost-aware GPBO. It outperforms the sampling
at fixed points on 100 synthetic dose-response curves while on
average utilizing approximately 8.6 % of the budget. It works
regardless of experiment scale, and can therefore be used to
save costs in DMA-based screenings and their repetitions at
larger scales. Our verification using experimental data shows
that even when restricting the method to selection from prede-
termined sampling points, it can produce results comparable
to full exploitation of the budget at significantly lower cost.
While our method is sequential in nature, parallelization
can be achieved across compounds, or by modification of
the algorithm to produce multiple candidate concentrations
in each iteration. Cost-savings and sample efficiency gains
made through our method can reduce the cost of screenings
using DMA technology itself. Additionally, our method of-
fers substantial savings at larger scales where larger doses and
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amounts of patient-derived cells are used, for example when
confirming DMA screenings in conventional experiments.

Future work should verify the method in experimental set-
tings. Additionally, prior knowledge on the sigmoid shape of
the dose-response curve should be embedded into the method,
by relying on specialized probabilistic models instead of a GP.
This may further improve sample efficiency.
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