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Abstract: The end-tidal partial pressure of CO, (PetCO,) is
widely used as a noninvasive and continuously measurable
surrogate for the arterial partial pressure of CO, (PaCOy).
The arterial to end-tidal CO, gradient (ApCO,(a-et)), which
is usually positive, changes over time and may become neg-
ative. Hence, estimating PaCO, from PetCO, is challeng-
ing. Yet, knowledge on the prevalence of negative ApCO;(a-
et) is limited. We analyze a dataset of 63 mechanically
ventilated preterm lambs on the occurrence of negative
ApCO;(a-et). Among 1,182 paired measurements of PaCO,
and PetCO,, 185 instances of negative ApCO;(a-et) are found,
which are distributed among 36 subjects. Further, we present
three classifiers for detecting negative ApCO,(a-et) on a bal-
anced subdataset based on noninvasive measurements of rou-
tine monitoring. The classifiers achieve promising results and
when validated on human data can contribute to robustly esti-
mating PaCO,.
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1 Introduction

The arterial partial pressure of CO, (PaCO,) is the core pa-
rameter to assess adequacy of CO, elimination under mechan-
ical ventilation. Invasive arterial blood gas analysis (ABG) is
the ’gold standard’ to determine PaCO,. In preterm neonates
PaCO, is of particular importance, because fluctuations and
extremes of PaCQO, are associated with severe intraventricu-
lar hemorrhage [1]. However, arterial blood gas samples al-
lows only intermittent assessment of PaCO,. As a continuous
and noninvasive surrogate for PaCO, the end-tidal partial pres-
sure of CO, (PetCO,) can be used. PetCO; corresponds to the
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partial pressure of CO, in the breathing gas at the end of ex-
piration and can be derived on a breath-by-breath basis from
continuous capnometry. PetCO, has been found to have good
correlation with PaCO; in neonates with healthy lungs but the
correlation weakens with lung diseases [2]. Having available
a noninvasive and reliable surrogate for PaCO, would be of
great value for individual clinical monitoring and adjustment
of mechanical ventilation not only in neonates, but in all pa-
tient groups. Further, this would contribute to robust physio-
logical closed-loop control of mechanical ventilation.

PetCO, is correlating with PaCO, because the expired
air at the end of expiration is mostly consisting of alveo-
lar air, which is assumed to be equilibrated with the arterial
blood. Yet, there remains a difference between PaCO, and
PetCO,, often called the arterial to end-tidal CO, gradient,
which will be denoted with ApCO;(a-et) in this paper. Typ-
ically, ApCO;(a-et) is expected to be positive, i.e., PaCO, be-
ing higher than PetCO,, due to air from deadspace regions of
the lungs mixing with the alveolar air. However, ApCO,(a-et)
can also be negative, i.e., measured PaCO, is found to be lower
than measured PetCO,. Observations of negative ApCO;(a-et)
have been reported in healthy adults, especially during exer-
cise and pregnancy, and in children and neonates [3]. Knowl-
edge of changes in the sign of ApCO;(a-et) would be a helpful
for achieving robust PetCO, based estimation of PaCO,. For
preterm neonates, this would directly contribute to detecting
unsafe values of PaCO,. Still, knowledge about the prevalence
of negative ApCO,(a-et) in mechanically ventilated (preterm)
neonates is currently limited to few studies [2, 4-6] and chal-
lenged by the usually small number of subjects in clinical stud-
ies involving preterm neonates.

This work contributes to solving the above mentioned
challenges in two ways. First, we present additional knowl-
edge on the prevalence of negative ApCO,(a-et) by analyz-
ing data from mechanically ventilated preterm lambs, an es-
tablished model for preterm neonates [7]. Second, we pro-
pose three classifiers for detecting negative ApCO,(a-et) from
data of noninvasive routine monitoring without knowledge of
PaC02 .
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Fig. 1: Data processing pipeline used in this work. The turquoise shaded steps involve data preparation, while the blue shaded steps
represent general data analysis, and the orange shaded steps correspond to classifier learning and evaluation.

2 Materials and Methods

2.1 Data Base

The data base includes 650 hours of ventilation data recorded
from 63 preterm lambs on the first day of life. The primary
study involved evaluation of a PaCO, controller for neonates
and parts of the data have been published in our corresponding
work [8, 9]. Mechanical ventilation was adjusted to the sub-
jects either by neonatologists or an automatic ventilation con-
troller. Maneuvers for evaluating the controller involved for
example the induction of hyper- and hypoventilation as shown
in [8]. These passages were purposefully kept in this work to
include a wide range of PaCO, values.

2.2 Ventilation Monitoring and Data
Collection

Ventilation was provided by a LeoniPlus ventilator (Lwen-
stein Medical SE & Co. KG, Bad Ems, Germany) with inte-
grated SpO, monitoring. Ventilation monitoring data includ-
ing respiratory rate (RR), expiratory tidal volume (Ve), inspi-
ratory fraction of oxygen (FiO,), positive end-expiratory pres-
sure (PEEP), and mean airway pressure (Pmean) were provided
by the ventilator. The fraction of CO, in the breathing gas was
measured with a MASIMO IRMA CO2 (Masimo Corporation,
Irvine, USA) proximal mainstream sensor at 50 Hz. PetCO,
was determined from the raw data as shown in [9]. Blood sam-
ples for ABGs were taken manually from an umbilical arterial
catheter and analyzed with an i-Stat 1 (Abbott Laboratories,
Chicago, USA) handheld bloodgas analyzer. The ABGs were
documented manually, whereas all other data were automati-
cally logged by a custom application [10]. ABGs were made
on a regular basis every 30 minutes, which allows to closely
evaluated the evolution of ApCO,(a-et) on the first day of life.
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2.3 Data Preparation and Analysis

The data processing pipeline used in this work is shown in
Figure 1. Of the 63 lambs in the database, three lambs were
excluded because of incomplete data following technical prob-
lems. Further, two lambs had to be excluded because of se-
vere health complications. The data of the resulting 58 lambs
were then preprocessed which involved smoothing and filling
of missing data with a moving mean over 60 seconds. Remain-
ing data gaps of up to five minutes were filled with forward
filling. In the next step, data gaps unable to be filled (i.e., gaps
of larger time intervals than 5 minutes) were excluded. In ad-
dition, data passages were excluded if Viewas below 12 ml as
this was identified as a lower threshold for reliable CO, mea-
surement in our ventilation setup. Viewas then normalized by
the individual animal bodyweight per kilogram. The resulting
dataset contained 1,182 ABGs and will be denoted as the main
dataset. The main dataset was used for general data analysis
and feature engineering presented in Section 3.1.

As the main dataset was found to be strongly imbalanced
a balanced dataset with the same number of observations of
positive and negative ApCO,(a-et) was created for classifier
training and evaluation. First, the main dataset was standard-
ized for improved classifier learning. Then, stratified random
sampling from the main dataset was performed. The result-
ing dataset includes 370 ABGs with corresponding noninva-
sive data, i.e., 185 cases of positive and negative ApCO,(a-et)
each. This smaller data will further be denoted as the balanced
dataset. Because of the small size of the balanced dataset strat-
ified 10-fold cross validation was used for model training and
validation to reduce the influence of selection bias.

As performance metrics accuracy, precision, recall, and
the F1 Score are used. Accuracy describes the proportion of
correct classifications made by a model among all instance to
be classified. Precision measures the proportion of true pos-
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itive cases among all positively classified instances. Recall,
also named sensitivity or true positive rate, denotes the pro-
portion of true positive classifications among all actual posi-
tive instances. Finally, the F1 Score is the harmonic mean of
precision and recall and thus helps, to get an impression of
the balance between both metrics. All four metrics take values
between zero (worst) and one (best).

3 Results

3.1 Data Analysis

In the main dataset of 1,182 paired measurements of PaCO,
from ABGs and PetCO, 185 instances of negative ApCO;(a-
et) were found, corresponding to 15 % of measurement pairs.
Negative ApCO,(a-et) were found in 37 out of 58 animals
(64 % of subjects), of which 2 animals accounted for more than
10 % of these events. In 36 of 58 animals both positive and
negative ApCO,(a-et) were observed, and in one animal only
negative ApCO»(a-et) occurred. In 35animals at least two
changes in the sign of ApCO,(a-et) were found. The sign of
ApCO;(a-et) changed twice in 15 of these animals, 3-4 times
in 10 of these animals and between 5 and 13 times in the other
10 animals. Among all measurements the mean ApCO,(a-et)
was 5.7 &+ 7.3 mmHg. Among the cases of negativ ApCO;(a-
et) the mean ApCO;(a-et) was -4.1 + 5.0 mmHg. Fig. 2 shows
the feature distribution of four selected features, showing that
negative ApCO,(a-et) was found more often at high PetCO,,
low RR and low Ppean. Although these trends are qualitatively
visible, the Pearson correlation for all of these features is weak
with rpecop = 0.22, rrr =-0.32, and rppean = -0.26. We did not
find a correlation between negative ApCO,(a-et) and the mag-
nitude of Vinormalized to body weight or absolute expired or
inspired tidal volume.

3.2 Classification

As shown in the previous section, negative ApCO,(a-et) and
several changes between positive and negative ApCO,(a-et)
are no seldom phenomenon in our main data set. Therefore,
detecting negative ApCO;(a-et) on noninvasive measurements
of routine monitoring may be helpful for individual patient
monitoring and robust estimation of PaCO, from PetCO,. We
present results of three classifiers for binary classification of
ApCO;(a-et) . A logistic regression, random forest and gradi-
ent boosting model were trained to detect negative ApCO,(a-
et) in our balanced dataset. As feature, i.a., PetCO, , RR,
Vie/bodyweight and Pmean Were used. The classification per-
formance on the validation data of the balanced dataset from
10-fold cross validation is shown in Fig. 3. The three models
show a relatively balanced and comparable performance on all
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Fig. 2: Feature distribution of four selected features. PetCO; is
given in mmHg, RR in 1/min, Vi.in ml/kg bodyweight, and Pmean in
mbar.

metrics. Whereas the Logistic Regression and Gradient Boost-
ing Model have a mean value between 0.78 - 0.82 among all
metrics, the Random Forest model has superior precision with
Prr = 0.86, but weaker recall with Rgg = 0.77. The Random
Forest model further has the best accuracy of 0.83. Among all
metrices, the variability of performance between the different
runs of cross validation is a lot larger than the performance
differences between the single models.

4 Discussion

In our main dataset the instances of negative ApCO,(a-et)
accounted for 15 % of all 1,182 measurements, which were
distributed among 64 % of subjects. [5] report a prevalence
of negative ApCO;(a-et) of 11.8 % among 754 measurements
from 32preterm neonates of extremely low birth weight
(<1000 g). [6] report 6 % of negative ApCO,(a-et) in 143
measurements of 45 preterm neonates of at least very low birth
weight (< 1,500 g). [2] found negative ApCO;(a-et) in 13.5 %
of 133 paired measurements from 32 ventilated neonates of
varying birth weight (840 - 3,500 g). In all three studies, blood
sampling was done through an arterial catheter and PetCO,
taken using mainstream capnography, as it was in our study.
Our findings align with these known work, although being at
the upper end of reported negative ApCO,(a-et) prevalence.
Whereas our dataset is of reasonable size in terms of a
clinical data set, it is small in terms of a base for training ma-
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Fig. 3: Classification results from 10-fold cross validation. The
span of performances among the 10 different evaluation sets is
represented with the whiskers, while each mean is marked with a
circle.

chine learning algorithms. Still, all three presented classifiers
achieved a good mean accuracy of around 0.8. The most im-
portant metric for our application is recall, as the aim of our
classification is to detect a specific condition, to alert a physi-
cian (who could then potentially take a blood probe for con-
firmation). With a recall of around 0.78 the classifiers are able
to detect a substantial amount of negative ApCO;(a-et) cases.
However, around 20 % of instances of negative ApCO,(a-et)
remain undetected. As the three models do not differ much in
their performance, we believe, the remaining performance gap
can rather be attributed to availability of underlying informa-
tion in the dataset, then the type of model. Unfortunately, we
did not find a single feature with a moderate or strong corre-
lation with negative ApCO,(a-et) among the measurements of
routine monitoring. Future work will therefore involve further
feature analysis to determine, if this finding is due to physio-
logical complexity or can be solved by advanced feature engi-
neering and data processing.

Although the preterm lamb model is well-established for
preterm pulmonary pathology and treatment [7], validation of
our results on human data is needed.

5 Conclusion

This work indicates that negative ApCO;(a-et) may be a com-
mon phenomenon in mechanically ventilated neonates, which
should be considered when estimating PaCO, from PetCO, .
Further studies on data of human subjects are needed to con-
firm our findings on the prevalence of negative ApCO,(a-et)
in preterm neonates and how these reflect in monitoring data.
The presented classification models can successfully detect the
occurrence of negative ApCO;(a-et) on data from noninvasive
routine monitoring. In the future, the accuracy of the models
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may be further enhanced by advancing feature engineering.
When validated on human data the presented classifiers can
contribute to robustly estimating PaCO, noninvesively.
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