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Abstract: Deep Brain Stimulation (DBS) is an effective
treatment for movement disorders. Optimizing stimulation
parameters remains, however, a trial-and-error process. Data-
driven models leveraging Probabilistic Mapping have shown
promise in predicting DBS outcomes, yet current studies rely
on chronic stimulation data. This study explores the feasibility
of using intra-operative stimulation test data for DBS effect
prediction. Probabilistic volumes of beneficial and adverse
effects were computed from intra-operative stimulation test
data of 65 patients (23 with Essential Tremor + 42 with
Parkinson’s Disease). A prediction dataset was generated
including clinical, morphological, stimulation features along
with features derived from probabilistic maps and simulated
Volumes of Tissue Activated. Three machine learning models
(Adaboost, Support Vector Classifier and Naive Bayes) were
implemented to predict stimulation effects in a classification
task. The models were validated in a leave-one-out cross-
validation and their performances were compared. All the
developed models were able to predict DBS outcome classes.
The best predictive performance was achieved by the
Adaboost model with a maximum balanced accuracy of 0.71
on 3 classes. These results show that intra-operative
stimulation test data can predict DBS effects with a similar
approach and
monopolar review data.

comparable accuracy to post-operative
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1 Introduction

Deep Brain Stimulation (DBS) is a neurosurgical intervention
primarily applied to the treatment of movement disorders such
as Parkinson’s Disease (PD) or Essential Tremor (ET) [1].
DBS strongly relies on the precise stimulation of target brain
structures. However, for most diseases the pathological
mechanisms are not completely understood, resulting in
varying stimulation targets among clinical centers. While
anatomical guidance can inform DBS settings selection,
optimizing stimulation parameters to balance symptom relief
and side effects often requires iterative adjustments over
multiple sessions [2]. To alleviate the complexity of this
process, recent research has focused on developing data-
driven models capable of predicting the effects of specific
DBS settings. These models are trained on feature sets derived
from a patient population, often incorporating variables
obtained through Probabilistic Mapping approaches
[31,[41,[5]. Probabilistic Mapping enables the identification of
average brain volumes associated with symptom
improvement, known as Probabilistic Sweet Spots (PSS), or
adverse effects. Activation of these regions has been
demonstrated to be predictive of stimulation outcomes
(tremor, rigidity, bradykinesia, axial signs) in Parkinson’s
Disease [6]. Nevertheless, no standardized DBS effect
prediction model or established set of clinical improvement
predictors currently exists. Moreover, all the available studies
are based on monopolar review data or chronic stimulation
parameters. This study aimed to assess the applicability of
DBS effect prediction approaches to intra-operative
stimulation test data. To achieve this, probabilistic volumes of
beneficial and adverse effects were first derived from intra-
operative stimulation tests. Subsequently, they were used to
train a machine learning model designed to predict the

outcomes of specific stimulation configurations.
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2 Materials and methods

2.1 Patients and clinical data

The analysis was conducted on data of 65 patients (42 PD +
23 ET, Ptolemee Electrophysiologie project: IRB 5921, CE-
CIC-GREN-18-03). The patients underwent bilateral DBS
implantation at the Department of Neurosurgery of Clermont-
Ferrand University Hospital, France, between 2008 and 2018.
28 patients (23 ET + 5 PD) were targeted in the
ventrointermediate nucleus of thalamus (Vim) and 37 (all PD)
in the subthalamic nucleus (STN). Pre-operative MR images
were used to segment deep brain structures of interest and for
the surgery planning. Intra-operative stimulation tests were
performed by stimulating with a microelectrode (Alpha-
Omega Engineering, Israel; frequency 130 Hz; pulse width 60
ps) in 1-mm steps over 14 mm, increasing the current
amplitude between 0.2 and 3 mA in steps of 0.2 mA.
Therefore, the tested positions along the trajectory ranged
from -10 to +4 with 0 indicating the target designated during
planning. Symptom improvement (tremor for Vim-targeted
patients, rigidity for STN-targeted patients) was classified as
“no improvement” (0%), “poor” (25%), “fair” (50%), “good”
(75%), “excellent” (100%), adding some intermediate values
if necessary. The lowest current amplitude generating
improvement and occurrence of side effects (oculomotor
effects, paresthesia, dysarthria) were recorded.

2.2 Probabilistic maps generation

Patients were categorized into Vim-targeted (patients=28,
stimulations=878) STN-targeted (patients=37,
stimulations=1234) groups, and probabilistic maps were
generated for each cohort. The Probabilistic Mapping
workflow is detailed in [7]. Briefly, pre-operative MR T1

and

images were used to generate patient-specific brain tissue
conductivity models with the software ELMA [8] and electric
field (EF) spread was simulated in Comsol Multiphysics 5.5
(COMSOL AB, Sweden). The EF was thresholded at
0.2 Vmm™ [9] to obtain the Volume of Tissue Activated
(VTA). Patients” VTAs were transferred in a group-specific
anatomical template [10] and voxel-wise statistical testing was
applied to compute the brain volumes associated with high
symptom improvement (PSS) and side effects (SE). A
Bayesian t-test was applied to the VTAs labelled with an
improvement score to extract the PSS. This included voxels
with a Bayes Factor (BF)>10 in favour of the alternative
HI:
improvement)”. VTAs associated with side effects of different

hypothesis “voxel  improvement>median(cohort

types were grouped together to obtain a general side effect
volume. Given the binary nature of the side effect information
(SE/mno SE) a binomial test with False Discovery Rate
correction was applied. Voxels with p-value<0.05 were
retained as part of the SE. Additionally, an nMap was
generated to depict the stimulation frequency per voxel, along
with a wMeanMap representing the weighted mean
improvement score for each voxel. An example of PSS, SE

and VTA is shown in Figure 1.

PSS
SE
B VTA

Figure 1: Probabilistic Sweet Spot (green), Side Effects map
(brown) and a patient’s Volume of Tissue Activated (light blue) in
anatomical atlas space (coronal view, zoom on deep brain area).

2.3 DBS effects prediction

A machine learning approach was implemented to predict the
effect of a specific VTA and applied separately to the Vim and
STN cohort. Datasets with clinical, morphological, stimulation
and VTA-related features (Table 1) were generated and used
to train the model. The target variable was the DBS effect
categorized in 3 classes:

- Side effects (class 0)

- No or low improvement (< 50%, class 1)

- High improvement (= 50%, class 2)
3 supervised machine learning models based on different
underlying principles were implemented and evaluated:
AdaBoost (Ada), Support Vector Classifier (SVC) and Naive
Bayes (NB). The Ada classification approach for the three
classes was based on a one vs. one logic. This means that a
separate binary classifier was trained for each pair of classes,
and final predictions were made via majority voting, instead
of using a multi-class approach fitting a single model to
directly distinguish all classes. Due to the sensitivity of NB
and SVC to multiple highly correlated features, these models
were provided with the first ten principal components derived
from Principal Component Analysis. Synthetic Minority Over-
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sampling Technique was applied to account for class
imbalance.

The models were validated using leave-one-out cross-
validation. In each iteration, probabilistic maps and feature
values were computed using n—1 patients for training, while
the remaining patient was reserved for testing. Evaluation
metrics were balanced accuracy, precision, recall, Fl-score.
Due to class imbalance in the dataset, balanced accuracy was
used as the evaluation metric, as it provides an unbiased
estimate of model performance by equally accounting for each
class.

Table 1: Features used to train the DBS effect prediction models.

Category Features list
Clinical Age, sex, disease duration, pre-operative
UPDRSIII, pre-operative levodopa dose
Morphological ~ Vim size, STN size
Stimulation Hemisphere
Microelectrode trajectory
Position on trajectory
VTA-related VTA volume

VTA-PSS centroid distance

VTA-PSS overlap (Dice coefficient)
mean(BF) in VTA-PSS overlap volume
VTA-SE overlap (Dice coefficient)
max(wMeanMap value) in VTA
mean(wMeanMap value) in VTA
max(nMap value) in VTA

VTA-atlas target structure overlap (Dice
coefficient)

Vim and STN size were calculated from the structures

segmentations on the pre-operative MRI.

3 Results

The model achieving the highest balanced accuracy was Ada
with scores of 0.71 for the STN cohort and 0.61 for the Vim
cohort. The classifications achieved with this model are shown
in Figure 2A and Figure 2B. The diagonals of the confusion
matrices show the percentages of correctly classified samples
for each class. The average of such values is the balanced
accuracy score. For the STN cohort the highest classification
performance was achieved for class 2, likely attributable to the
larger number of available samples for this class. On the
contrary, the best predictive performance was shown on class
0 for the Vim cohort.

The second-best performing model was SVC with 0.69 (STN)
and 0.59 (Vim), while NB reached 0.67 (STN) and 0.57 (Vim).
The precision, recall and Fl-scores of the 3 models are

summarized in Table 2. Ada outperformed the other models
across both cohorts, showing the highest precision, recall, and
F1 scores. However, all models experienced a performance
drop when moving from the STN to the Vim cohort, with recall
being the most impacted. The top three most important
features in the prediction were: VTA volume, VTA-PSS
centroid distance and VTA-SE overlap.

STN cohort
A,
0 N =220
w)
=
o1 N =290
g
H
2 N=649
0 1 2
Predicted class
Vim cohort
B.
0 N=128
z
o1 N=195
2
H
2 N =491

0 1 2
Predicted class

Figure 2: Confusion matrices showing the ratios of classified and
misclassified samples for each class with the Adaboost model for
the STN (A) and the Vim (B) cohort. N indicates the number of
records available for each class.

Table 2: Precision, recall and f1-scores for the 3 implemented
machine learning models, for the STN cohort (left) and Vim cohort

(right).

STN cohort Vim cohort
Model Precision Recall F1 Precision Recall F1
Ada 0.76 0.75 0.76 0.67 0.60 0.62
SvVC 0.75 0.73 0.74 0.66 0.62 0.63
NB 0.73 0.68 0.70 0.64 0.51 0.53
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4 Discussion

Developing a reliable model for DBS effect prediction is
crucial for optimizing parameter programming. This study
that
approaches can be effectively applied to intra-operative

demonstrated machine learning-based prediction
stimulation data. Specifically, we successfully classified three
effect categories using a combination of clinical variables,
stimulation-related features, and probabilistic map-derived
data. We benchmarked three machine learning models based
on distinct principles: Adaboost, Support Vector Classifier,
and Naive Bayes. While performance differences among the
models were minor, Adaboost demonstrated the highest
accuracy, likely due to its ability to better capture complex
relationships within the data. Our best model achieved a
maximum balanced accuracy of 0.71 on the STN cohort. The
accuracy score is comparable to or slightly higher than those
reported in most previous studies [3], [4]. This suggests that,
while probabilistic maps and clinical data provide valuable
information, they are not the sole predictors of DBS effects in
intra-operative data, consistently with the findings of post-
operative analyses. Notably, one prior work achieved over
92% accuracy in a four-class classification [6]; however, their
higher performance may be attributed to a substantially larger
patient cohort (275 individuals). A broader patient cohort, in
fact, mitigates the impact of individual electrode positions on
probabilistic maps, improving their generalizability and
enhancing the robustness of derived features. Furthermore,
dividing patients into efficacy quartiles helped mitigate class
imbalance. This issue is particularly evident in the results for
our STN cohort, where the minority classes exhibit lower
classification accuracy compared to the majority class.

All three models exhibited higher performance in the
STN cohort compared to the Vim cohort (~0.70 accuracy vs.
~0.60). This could be due to the larger number of patients and
stimulations available for the STN cohort, which enabled a
better refinement of PSS and probabilistic adverse effects
areas. Additionally, the nature of the predicted effect (rigidity
for the STN cohort, tremor for the Vim cohort) may have also
influenced the performance. The performance drop between
STN and Vim cohort was particularly noticeable in the recall
score. This suggests that the models were less effective in
capturing the true positives in the Vim cohort. Despite it being
still an exploratory study, this work underlines how intra-
operative stimulation test data allow to predict DBS effects in
the same fashion, and with comparable results, as post-
operative monopolar review data. Finding an optimal
prediction model and an established set of predictors is,

nonetheless, still an open challenge. Future works should,
therefore, focus on these aspects with the support of
comprehensive datasets including fiber tracts information and
electrophysiological recordings.
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