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Abstract: Deep Brain Stimulation (DBS) is an effective 
treatment for movement disorders. Optimizing stimulation 
parameters remains, however, a trial-and-error process. Data-
driven models leveraging Probabilistic Mapping have shown 
promise in predicting DBS outcomes, yet current studies rely 
on chronic stimulation data. This study explores the feasibility 
of using intra-operative stimulation test data for DBS effect 
prediction. Probabilistic volumes of beneficial and adverse 
effects were computed from intra-operative stimulation test 
data of 65 patients (23 with Essential Tremor + 42 with 
Parkinson’s Disease). A prediction dataset was generated 
including clinical, morphological, stimulation features along 
with features derived from probabilistic maps and simulated 
Volumes of Tissue Activated. Three machine learning models 
(Adaboost, Support Vector Classifier and Naïve Bayes) were 
implemented to predict stimulation effects in a classification 
task. The models were validated in a leave-one-out cross-
validation and their performances were compared. All the 
developed models were able to predict DBS outcome classes. 
The best predictive performance was achieved by the 
Adaboost model with a maximum balanced accuracy of 0.71 
on 3 classes. These results show that intra-operative 
stimulation test data can predict DBS effects with a similar 
approach and comparable accuracy to post-operative 
monopolar review data. 

Keywords: Deep Brain Stimulation, machine learning, effect 
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1 Introduction 

Deep Brain Stimulation (DBS) is a neurosurgical intervention 
primarily applied to the treatment of movement disorders such 
as Parkinson’s Disease (PD) or Essential Tremor (ET) [1]. 
DBS strongly relies on the precise stimulation of target brain 
structures. However, for most diseases the pathological 
mechanisms are not completely understood, resulting in 
varying stimulation targets among clinical centers. While 
anatomical guidance can inform DBS settings selection, 
optimizing stimulation parameters to balance symptom relief 
and side effects often requires iterative adjustments over 
multiple sessions [2]. To alleviate the complexity of this 
process, recent research has focused on developing data-
driven models capable of predicting the effects of specific 
DBS settings. These models are trained on feature sets derived 
from a patient population, often incorporating variables 
obtained through Probabilistic Mapping approaches 
[3],[4],[5]. Probabilistic Mapping enables the identification of 
average brain volumes associated with symptom 
improvement, known as Probabilistic Sweet Spots (PSS), or 
adverse effects. Activation of these regions has been 
demonstrated to be predictive of stimulation outcomes 
(tremor, rigidity, bradykinesia, axial signs) in Parkinson’s 
Disease [6]. Nevertheless, no standardized DBS effect 
prediction model or established set of clinical improvement 
predictors currently exists. Moreover, all the available studies 
are based on monopolar review data or chronic stimulation 
parameters. This study aimed to assess the applicability of 
DBS effect prediction approaches to intra-operative 
stimulation test data. To achieve this, probabilistic volumes of 
beneficial and adverse effects were first derived from intra-
operative stimulation tests. Subsequently, they were used to 
train a machine learning model designed to predict the 
outcomes of specific stimulation configurations.  
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2 Materials and methods 

2.1 Patients and clinical data 

The analysis was conducted on data of 65 patients (42 PD + 
23 ET, Ptolemee Electrophysiologie project: IRB 5921, CE-
CIC-GREN-18-03). The patients underwent bilateral DBS 
implantation at the Department of Neurosurgery of Clermont-
Ferrand University Hospital, France, between 2008 and 2018. 
28 patients (23 ET + 5 PD) were targeted in the 
ventrointermediate nucleus of thalamus (Vim) and 37 (all PD) 
in the subthalamic nucleus (STN). Pre-operative MR images 
were used to segment deep brain structures of interest and for 
the surgery planning. Intra-operative stimulation tests were 
performed by stimulating with a microelectrode (Alpha-
Omega Engineering, Israel; frequency 130 Hz; pulse width 60 
µs) in 1-mm steps over 14 mm, increasing the current 
amplitude between 0.2 and 3 mA in steps of 0.2 mA. 
Therefore, the tested positions along the trajectory ranged 
from -10 to +4 with 0 indicating the target designated during 
planning. Symptom improvement (tremor for Vim-targeted 
patients, rigidity for STN-targeted patients) was classified as 
“no improvement” (0%), “poor” (25%), “fair” (50%), “good” 
(75%), “excellent” (100%), adding some intermediate values 
if necessary. The lowest current amplitude generating 
improvement and occurrence of side effects (oculomotor 
effects, paresthesia, dysarthria) were recorded.  

2.2 Probabilistic maps generation 

Patients were categorized into Vim-targeted (patients=28, 
stimulations=878) and STN-targeted (patients=37, 
stimulations=1234) groups, and probabilistic maps were 
generated for each cohort. The Probabilistic Mapping 
workflow is detailed in [7]. Briefly, pre-operative MR T1 
images were used to generate patient-specific brain tissue 
conductivity models with the software ELMA [8] and electric 
field (EF) spread was simulated in Comsol Multiphysics 5.5 
(COMSOL AB, Sweden). The EF was thresholded at 
0.2 V mm-1 [9] to obtain the Volume of Tissue Activated 
(VTA). Patients’ VTAs were transferred in a group-specific 
anatomical template [10] and voxel-wise statistical testing was 
applied to compute the brain volumes associated with high 
symptom improvement (PSS) and side effects (SE). A 
Bayesian t-test was applied to the VTAs labelled with an 
improvement score to extract the PSS. This included voxels 
with a Bayes Factor (BF)≥10 in favour of the alternative 
hypothesis H1: “voxel improvement>median(cohort 
improvement)”. VTAs associated with side effects of different 

types were grouped together to obtain a general side effect 
volume. Given the binary nature of the side effect information 
(SE/no SE) a binomial test with False Discovery Rate 
correction was applied. Voxels with p-value<0.05 were 
retained as part of the SE. Additionally, an nMap was 
generated to depict the stimulation frequency per voxel, along 
with a wMeanMap representing the weighted mean 
improvement score for each voxel. An example of PSS, SE 
and VTA is shown in Figure 1. 

2.3 DBS effects prediction 

A machine learning approach was implemented to predict the 
effect of a specific VTA and applied separately to the Vim and 
STN cohort. Datasets with clinical, morphological, stimulation 
and VTA-related features (Table 1) were generated and used 
to train the model. The target variable was the DBS effect 
categorized in 3 classes: 

- Side effects (class 0) 
- No or low improvement (< 50%, class 1) 
- High improvement (≥ 50%, class 2)    

3 supervised machine learning models based on different 
underlying principles were implemented and evaluated: 
AdaBoost (Ada), Support Vector Classifier (SVC) and Naïve 
Bayes (NB). The Ada classification approach for the three 
classes was based on a one vs. one logic. This means that a 
separate binary classifier was trained for each pair of classes, 
and final predictions were made via majority voting, instead 
of using a multi-class approach fitting a single model to 
directly distinguish all classes. Due to the sensitivity of NB 
and SVC to multiple highly correlated features, these models 
were provided with the first ten principal components derived 
from Principal Component Analysis. Synthetic Minority Over-

Figure 1: Probabilistic Sweet Spot (green), Side Effects map 
(brown) and a patient’s Volume of Tissue Activated (light blue) in 
anatomical atlas space (coronal view, zoom on deep brain area). 
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sampling Technique was applied to account for class 
imbalance.  

The models were validated using leave-one-out cross-
validation. In each iteration, probabilistic maps and feature 
values were computed using n−1 patients for training, while 
the remaining patient was reserved for testing. Evaluation 
metrics were balanced accuracy, precision, recall, F1-score. 
Due to class imbalance in the dataset, balanced accuracy was 
used as the evaluation metric, as it provides an unbiased 
estimate of model performance by equally accounting for each 
class.  

Table 1: Features used to train the DBS effect prediction models. 

Vim and STN size were calculated from the structures 
segmentations on the pre-operative MRI. 

3 Results 

The model achieving the highest balanced accuracy was Ada 
with scores of 0.71 for the STN cohort and 0.61 for the Vim 
cohort. The classifications achieved with this model are shown 
in Figure 2A and Figure 2B. The diagonals of the confusion 
matrices show the percentages of correctly classified samples 
for each class. The average of such values is the balanced 
accuracy score. For the STN cohort the highest classification 
performance was achieved for class 2, likely attributable to the 
larger number of available samples for this class. On the 
contrary, the best predictive performance was shown on class 
0 for the Vim cohort. 
The second-best performing model was SVC with 0.69 (STN) 
and 0.59 (Vim), while NB reached 0.67 (STN) and 0.57 (Vim). 
The precision, recall and F1-scores of the 3 models are 

summarized in Table 2. Ada outperformed the other models 
across both cohorts, showing the highest precision, recall, and 
F1 scores. However, all models experienced a performance 
drop when moving from the STN to the Vim cohort, with recall 
being the most impacted. The top three most important 
features in the prediction were: VTA volume, VTA-PSS 
centroid distance and VTA-SE overlap. 

Table 2: Precision, recall and f1-scores for the 3 implemented 
machine learning models, for the STN cohort (left) and Vim cohort 
(right).  

Category Features list 

Clinical  Age, sex, disease duration, pre-operative 
UPDRSIII, pre-operative levodopa dose 

Morphological  Vim size, STN size 

Stimulation  Hemisphere 
Microelectrode trajectory 
Position on trajectory 

VTA-related  VTA volume 
VTA-PSS centroid distance 
VTA-PSS overlap (Dice coefficient) 
mean(BF) in VTA-PSS overlap volume 
VTA-SE overlap (Dice coefficient) 
max(wMeanMap value) in VTA 
mean(wMeanMap value) in VTA 
max(nMap value) in VTA 
VTA-atlas target structure overlap (Dice 
coefficient) 

 STN cohort Vim cohort 

Model  Precision  Recall  F1 Precision  Recall F1 

Ada   0.76 0.75 0.76 0.67  0.60 0.62 

SVC  0.75 0.73 0.74 0.66  0.62 0.63 

NB  0.73 0.68 0.70 0.64  0.51 0.53 

Figure 2: Confusion matrices showing the ratios of classified and 
misclassified samples for each class with the Adaboost model for 
the STN (A) and the Vim (B) cohort. N indicates the number of 
records available for each class. 

352



4  Discussion 

Developing a reliable model for DBS effect prediction is 
crucial for optimizing parameter programming. This study 
demonstrated that machine learning-based prediction 
approaches can be effectively applied to intra-operative 
stimulation data. Specifically, we successfully classified three 
effect categories using a combination of clinical variables, 
stimulation-related features, and probabilistic map-derived 
data. We benchmarked three machine learning models based 
on distinct principles: Adaboost, Support Vector Classifier, 
and Naïve Bayes. While performance differences among the 
models were minor, Adaboost demonstrated the highest 
accuracy, likely due to its ability to better capture complex 
relationships within the data. Our best model achieved a 
maximum balanced accuracy of 0.71 on the STN cohort. The 
accuracy score is comparable to or slightly higher than those 
reported in most previous studies [3], [4]. This suggests that, 
while probabilistic maps and clinical data provide valuable 
information, they are not the sole predictors of DBS effects in 
intra-operative data, consistently with the findings of post-
operative analyses. Notably, one prior work achieved over 
92% accuracy in a four-class classification [6]; however, their 
higher performance may be attributed to a substantially larger 
patient cohort (275 individuals). A broader patient cohort, in 
fact, mitigates the impact of individual electrode positions on 
probabilistic maps, improving their generalizability and 
enhancing the robustness of derived features. Furthermore, 
dividing patients into efficacy quartiles helped mitigate class 
imbalance. This issue is particularly evident in the results for 
our STN cohort, where the minority classes exhibit lower 
classification accuracy compared to the majority class. 

All three models exhibited higher performance in the 
STN cohort compared to the Vim cohort (~0.70 accuracy vs. 
~0.60).   This could be due to the larger number of patients and 
stimulations available for the STN cohort, which enabled a 
better refinement of PSS and probabilistic adverse effects 
areas. Additionally, the nature of the predicted effect (rigidity 
for the STN cohort, tremor for the Vim cohort) may have also 
influenced the performance. The performance drop between 
STN and Vim cohort was particularly noticeable in the recall 
score. This suggests that the models were less effective in 
capturing the true positives in the Vim cohort. Despite it being 
still an exploratory study, this work underlines how intra-
operative stimulation test data allow to predict DBS effects in 
the same fashion, and with comparable results, as post-
operative monopolar review data. Finding an optimal 
prediction model and an established set of predictors is, 

nonetheless, still an open challenge. Future works should, 
therefore, focus on these aspects with the support of 
comprehensive datasets including fiber tracts information and 
electrophysiological recordings. 
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