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Abstract: Hyperspectral Imaging (HSI) is a promising tool
for assisting medical diagnostics, as it enables precise tissue
characterization and differentiation through detailed spectral
analysis. However, HSI data analysis faces challenges in reli-
ably identifying relevant regions (e.g., tumors, vascular struc-
tures) due to spectral variability, complicating universal algo-
rithm development, especially with limited ground truth data.
Focusing on endometriosis as a medical use case, we gen-
erate plausible reference spectra (endmembers) for affected
tissue using HSI data, despite limited and weakly annotated
datasets. Our processing pipeline includes Savitzky-Golay
(SG) smoothing, Standard Normal Variate (SNV) standard-
ization, Principal Component Analysis (PCA), superpixel seg-
mentation and the Pixel Purity Index (PPI). Validation via In-
tersection over Union (IoU) achieves 0.94 accuracy in lesion
detection.
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1 Introduction

Hyperspectral Imaging (HSI) leverages detailed spectral data
to enhance tissue analysis in medical applications, offering in-
sights into tissue composition beyond conventional imaging
techniques. By extracting spectral fingerprints, he discrimina-
tion of even subtle tissue alterations can be enhanced. How-
ever, its diagnostic utility is limited by spectral variability and
the lack of comprehensive annotated datasets, posing chal-
lenges for robust feature extraction.

We examine endometriosis as a model case using ex-vivo
HSI data acquired with a UV-VIS camera with a specral range
of 330-800 nm and a spectral resolution of 2.8 nm (FWHM),
measuring reflectance using a Spectralon reference standard.
Endometriosis presents diagnostic challenges due to its vari-
able appearance across different organs and frequent recur-
rence after treatment, often causing severe pain and infertility.
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This study aims to generate reference spectra (endmem-
bers) for affected tissue to improve endometriosis lesion de-
tection in hyperspectral images. The current work is limited
to four weakly annotated images (see Figure 1), demonstrat-
ing the feasibility of the approach for initial analysis despite
limited data.

Fig. 1: RGB representations of all used images. The red marked
areas show the regions of interest which include tissue affected by
endometriosis.

2 Methodology

To generate endmember spectra, the HSI data undergoes the
following processing steps. Initially, artifacts and noise are
eliminated. Following this purification, the data set is standard-
ized to ensure the integrity of the data. The dataset is then re-
duced in dimensionality, followed by superpixel segmentation
to group pixels into homogeneous regions. Endmembers are
extracted from these superpixels and spectral evaluation met-
rics are applied to assess the quality of the generated spectra.

2.1 Data Preprocessing

The preprocessing pipeline involves three sequential steps to
enhance data quality. First, background and highly reflective
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pixels are removed via threshold and visual inspection. Sec-
ond, a Savitzky-Golay (SG) filter (2nd-order polynomial, 7-
band filter window) reduces high-frequency noise while pre-
serving spectral features, e.g. absorption peaks [4]. Third,
Standard Normal Variate (SNV) normalization is applied to
correct scattering effects and variations in illumination across
samples by performing Equation 1 on each spectrum [5].

XSNV =
X− 𝜇

𝜎
(1)

Here, 𝜇 and 𝜎 represent the mean and standard deviation of
the spectrum, respectively. This standardization of the data en-
sures cross-sample comparability.

Additionally, the dimensionality of the hyperspectral
dataset is reduced by using Principal Component Analysis
(PCA), retaining most of the information by transforming the
data into orthogonal principal components (PCs) ordered by
their variance contribution [6]. In this case, the first five PCs
are kept, capturing over 95 % of the variance to represent the
dataset in a lower-dimensional space. This step mitigates the
curse of dimensionality [7], improves computational efficiency
and minimizes spectral redundancy.

A Simple Linear Iterative Clustering (SLIC) algorithm
then segments the hyperspectral images into spectrally homo-
geneous superpixels [8]. Each superpixel is represented by the
average spectrum of its constituent pixels using Equation 2.

S̄j(𝜆) =
1

𝑁

𝑁∑︁
𝑖=1

𝑆𝑖,𝑗(𝜆) (2)

Here, 𝑆𝑗(𝜆) is the mean spectrum of over all 𝑁 individual
pixels in each superpixel denoted by 𝑗.

This reduces computational load, suppresses noise and en-
hances processing efficiency. The approach also improves in-
terpretability, offering a structured basis for downstream anal-
ysis [8]. As an example, results for the image in Figure 1 (c)
are shown in Figure 2 (a).

2.2 Endmember Selection

The superpixels being used are further restricted to those en-
closed by the annotated regions shown in Figure 1 to ensure
the resulting endmember spectra represent affected tissue. An
example of this step is visualized in Figure 2 (b). Hence, only
the yellow marked superpixels within this image are used.

The Pixel Purity Index (PPI) algorithm is then applied to
these averaged spectra. PPI identifies pure pixels by projecting
spectral data onto random vectors and counting extreme occur-
rences, with the highest-scoring pixels selected as endmem-
bers [9]. According to the geometric rule of thumb 𝑛 ≤ 𝑝+ 1,
for a five-dimensional space (𝑝 = 5), a maximum of 𝑛 = 6

Fig. 2: Image examples of (a) superpixel segmented image and
(b) markings of superpixels that lie outside (blue), on the border
(cyan) and inside (yellow) the ROI corresponding to Figure 1 (c).

endmembers are defined to form a simplex capturing spectral
diversity [10]. Therefore, the number of expected endmembers
is set to six.

2.3 Evaluation

For Evaluation, the Spectral Angle Mapper (SAM) algorithm
is used, calculating the similarity between pixel spectra 𝑡 and
endmember spectra 𝑟 by

𝛼 = cos−1

(︂
t · r

|t| · |r|

)︂
, (3)

where lower scores 𝛼 indicate higher similarity [11].
Afterwards, the Intersection over Union (IoU) is calcu-

lated using segmentation maps, which are generated by as-
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signing each pixel to the endmember with the lowest SAM
score, corresponding to the most suitable endmember. IoU de-
termines the ratio of the overlap area between the predicted
endmember and the label-area to the corresponding area of
their union [12]. A weighted variant (wIoU) incorporates SAM
scores for pixel weighting instead of binary segmentation. To
emphasize differences, the wIoU is additionally standardised
to the interval [0,1], continuously referred to as rescaled wIoU.

3 Results

By restricting the used superpixels to those enclosed by the
areas labeled in Figure 1, the total number of superpixels
is reduced from 1209 to 335, serving as input for the PPI
algorithm, producing six endmember spectra. Consequently,
the endmembers potentially indicate tissue affected by en-
dometriosis.

Tab. 1: Evaluation scores corresponding to the significance of
each endmember.

Endmember No. 1 2 3 4 5 6

IoU 0.80 0.52 0.26 0.21 0.87 0.94
wIoU 0.43 0.36 0.34 0.33 0.39 0.46
rescaled wIoU 0.75 0.21 0.07 0.00 0.44 1.00

Table 1 shows the results of all IoU variants used for each
endmember across all images viewed. The IoU values indicate
that segments overlap most for endmembers 1, 5 and 6, while
endmember 4 has the least overlap. This is further refined via
the wIoU and rescaled wIoU, showing endmembers 1 and 6
have the highest agreement.

Figure 3 presents the score maps for all images and end-
members, with scores inverted for visualization to show a
higher score as a better match. Endmembers 1 and 6 show the
highest scores within the labeled and therefore endometriosis
affected areas (see Figure 1). In comparison, although end-
member 5 also scores high values in these areas, they do not
differ as much from those of the surrounding tissue. Thus, end-
members 1 and 6 are best for highlighting affected regions due
to their high sensitivity in score differences.

Examining the spectra of the extracted endmembers in
Figure 4, there are significant discrepancies in local extrema,
especially at wavelengths around 350 nm, 420 nm, 630 nm and
750 nm. These areas may be particularly significant, warrant-
ing further analysis in future research.
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Fig. 4: Spectrum of each resulting endmember.

4 Conclusion and future work

In conclusion, extracting endmembers using the presented
methodology highlights affected tissue areas in the sample
data. Future studies will include additional data acquired and
examined in collaboration with clinical partners. Spectral anal-
ysis and AI techniques will synthetically expand the dataset
through Diffusion Models, optimizing algorithms to differen-
tiate affected from healthy tissue. While pixel-wise labeling is
not yet part of the process, it may be used for select exam-
ples in future work to refine algorithms. The ultimate goal is
to develop a robust classifier for subtle endometriosis lesions,
integrated with an HSI endoscope to assist surgeons by pro-
viding enhanced visualization (e.g. as an overlay of affected
areas) during minimally invasive procedures. This is crucial
for treating barely visible lesions to prevent recurrences and
persistent pain, enhancing therapy quality and ensuring com-
plete removal of endometriosis lesions.
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Fig. 3: Score-Maps of for each endmember and image configuration. A higher score corresponds to a greater match between the pixel
and the respective endmember.
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