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Abstract: The application of instrument segmentation holds
significant potential for the future of robotic-assisted mini-
mally invasive surgery, as it has the ability to enhance context
awareness of the support system. The objective of this research
is the development of a new feature that detects the tips of an
instrument and can measures the distance between them. The
calculated distances between the tips can then be utilized by
the surgeon to assess the geometric structure of organs or le-
sions, which can play a pivotal role in the decision-making
process. The proposed methodology involves the automatic
segmentation of instrument parts using Mask R-CNN, which
facilitates the selection of a tool tip through a straightforward
algorithm. The necessity of connecting jaws to the subsequent
instrument part or the boundary is beneficial in the elimination
of outliers. The Mask R-CNN achieves an mIoU of 0.6441
for instrument parts segmentation. The tips are detected with
a rate of 66.78% compared to the ground truth. The average
euclidean distance to the ground truth is 8.37 pixels or 1.02%
of the image resolution.
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1 Introduction

Robotic-assisted minimally invasive surgery (RAMIS) mini-
mizes the physical impact of surgery on patients. Systems such
as the da Vinci surgical platform enhance RAMIS by using ar-
ticulated joints to precisely replicate the surgeon’s wrist move-
ments, achieving accuracy levels often unattainable with tradi-
tional minimally invasive surgery (MIS) [1, 2].

Automatic Instrument Segmentation enhances RAMIS
by improving context awareness in surgical support systems
through precise instrument positioning data. These enhance-
ments can drive advancements in augmented reality and visu-
alization technologies [3], providing accurate instrument pose
information that supports surgeons and improves precision,
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control, and patient outcomes [1] The field of instrument seg-
mentation remains an active area of research, and has been a
focal point of multiple challenges in recent years [4, 5].

This paper introduces a novel feature that measures the
distance between instrument tips through parts segmentation
using Mask R-CNN [6]. The tool tip is defined as the most
distal point opposite the connection between the jaw and the
instrument component. This distance metric is crucial for sur-
gical decision-making in size-dependent procedures, such as
tumor classification [7]. During RAMIS, surgeons use a con-
sole to control robotic arms, and our method provides a simple
way to measure organ or lesion size without the need for ad-
ditional systems. We demonstrate that segmentation and basic
tools can create an intuitive distance measurement system that
improves surgical precision and decision making.

2 Methods

2.1 Experimental data set

For instance part segmentation the data set from the 2017
Endoscopic Vision Instrument Segmentation Challenge (En-
doVis17) [4] is used. The data set consists of ten procedures of
300 frames each, recorded by a da Vinci system. For this paper
sequences nine and ten are used as test data, with 600 frames.
The eighth sequence serves as the validation data set, while the
remaining seven sequences form the training set, with a total
of 1,575 images, all resized to 640×512. The present contribu-
tion is focused on the process of parts segmentation, wherein
the instruments are divided into three segments: shaft, wrist
and jaw.

2.2 Mask R-CNN

The Mask R-CNN [6] is a network designed for instance seg-
mentation, which aims to differentiate objects within an image
by predicting a mask for each individual instance of a class.
Mask R-CNN is a Convolutional Neural Network (CNN) that
is based on the well-known object detection model Faster R-
CNN and extends it with a segmentation branch [8].

The mask network consists of four main components:
an encoder for feature extraction, a region proposal network
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(RPN) that generates candidate bounding boxes (anchors) with
associated object probabilities, and a region of interest (RoI)
pooling layer that refines these proposals to enhance alignment
with the feature maps. It employs two parallel branches for ob-
ject classification and bounding box prediction, along with a
fully convolutional network (FCN) that predicts segmentation
masks for each class. Losses for the mask, bounding box, and
classification are calculated and aggregated to form a compre-
hensive loss. Finally, non-maximum suppression is utilized to
eliminate duplicate detections of the same object.

2.3 Metrics

The mean intersection over union (mIoU) and the mean Aver-
age Precision (mAP) are the metrics employed to evaluate the
results. These metrics are commonly applied in the context of
segmentation tasks. The mIoU is a metric that quantifies the
precision with which the model identifies and segments ob-
jects, calculated as the ratio of the intersection over union area
of the predicted and true objects. The mIoU ranges from zero
to one, with zero indicating no overlap and one representing a
perfect result and is calculated as follows:
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The term 𝐴 is defined as the ground truth, 𝐵 as the predictions
of the model, 𝐶 as the number of classes and 𝑁 the number
of total images. Initially, the IoU scores for each class in each
image of the test data set are calculated. Subsequently, for each
image, the average IoU across all classes is computed. Finally,
the mean mIoU for each class is obtained by averaging these
average IoU scores across all images in the data set.

The mAP is another commonly used metric, that calcu-
lates the area under the precision-recall curve for different
IoU thresholds, providing an aggregate measure of the model’s
ability to correctly identify relevant instances across different
recall levels. Precision measures the accuracy of positive pre-
dictions, while recall measures the proportion of actual posi-
tives identified. Together, they indicate a model’s performance
and effectiveness in capturing relevant cases.

2.4 Tool tip detection

The tips of instruments are not always clearly definable; for ex-
ample, forceps have multiple tips, and some may be occluded
in the image. To provide a consistent definition, the tip is iden-
tified as the most distal point of the instrument’s jaw, ensuring
it is recognizable and intuitive for users. To detect the tips ac-
curately, several conditions must be met: first, the jaw must

be segmented by the Mask R-CNN, as it contains the tip, and
second, there must be a connection to the image’s boundary or
the next instrument part to validate the classification and deter-
mine the tip’s location. The initial condition is established by
using the jaw component as the reference point for detecting
the tip. The connection is determined by the intersection area
between the jaw mask and another instrument component, ex-
cluding other jaw parts or components assigned to different
instruments. Segmentation may result in small gaps, leading
to a lack of intersection; in such cases, the jaw part is dilated
to expand the segmentation mask, repeating this process un-
til a connection is found or the jaw part is deemed incorrectly
classified. If a connection is established, the connection point
is calculated as the mean of the intersection of the two parts.

Following this step the contour points of the jaw masks
are calculated. A morphological closing operation is applied
to bridge disconnected areas between contours, and if multi-
ple contours remain, the part is discarded for lacking distinc-
tiveness at the tip. The tool tip, is expected to be positioned at
an angle of ±90∘ from the connection point, on the opposite
side of the reference point. From the remaining contour points
the tool tip is selected based on the maximum radius from the
center.

3 Training the Mask R-CNN

All implementations are executed using python 3.10 and Ten-
sorflow 2.15 libraries on an Nvidia H100. The implementa-
tion for the Mask R-CNN is adopted from [9] and adapted
to the EndoVis17 data set. In this paper geometric and inten-
sity transformations are used, the former consisting of flipping
and rotation, and the later consisting of adding Gaussian noise,
multiplication, Gaussian blur, hue and saturation. For each im-
age, up to six augmentations are randomly selected and ap-
plied.

For the Mask R-CNN the ResNet101 is selected as the
backbone model, with pretrained COCO weights, which re-
duces the training time and enhance the robustness of the
model. It distinguishes between four classes: shaft, wrist, jaw,
and background. The batch size is set to 32.

The training process is consists of two distinct phases.
In the initial phase, the RPN, the mask head, and the classi-
fication head are trained, the backbone remains frozen. The
learning rate is set to 0.001 after exploring several alternative
values, with 25 epochs of training, at which point the loss be-
gins to converge. In the second step the model is fine tuned,
by incorporating the backbone parameters. The learning rate
is reduced to 5 × 10−5. 40 epochs are trained for fine-tuning,
but the validation loss decreases only slightly, indicating the
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(a) (b)

Fig. 1: Segmentation results of the trained Mask R-CNN

end of optimization, and further training does not significantly
improve the loss or evaluation metrics.

4 Results

4.1 Results of Parts Segmentation

The trained network demonstrates an overall mIoU of 0.6441
and an overall mAP of 0.4126, with the shaft achieving 0.7754
in mIoU and 0.6162 in mAP, the wrist attaining 0.6037 and
0.3686, and the jaw attaining 0.5544 and 0.2529. Additionally,
the network recorded mIoU values of 0.5842 for data set nine
and 0.7041 for data set ten.

The results are significantly different for the classes, as
shaft has the highest value, followed by wrist and jaw. This
can be traced back to the different size of the objects. The shaft
is usually, if present, the largest part of the instrument, which
makes the impact of small miss predictions of pixel less con-
sequential. Additionally the shaft has a low curvature shape
and is therefore more straightforward to predict. A same prin-
ciple applies to the wrist in an attenuated form. For the jaw,
small mask sizes mean that minor misclassifications have a
more significant impact on the mIoU. Additionally, the jaws
are more likely to be occluded by small tissue, thereby render-
ing the prediction process more challenging for the model. The
lower mAP points out, that the model struggles with higher
IoU thresholds, which is underlined by the mIoU values.

Fig. 1 illustrates an examples for the segmentation of the
trained Mask R-CNN model on the test data set, including a
misclassification, wherein a portion of the tissue has been er-
roneously designated as a jaw part. Furthermore a jaw part is
missing.

4.2 Results Tip detection

The evaluation of tip detection is conducted by calculating the
percentage of tips detected from the prediction in relation to

(a) (b)

Fig. 2: Results of tip detection, left: gray scale image of the parts
segmentation; right: image with detected tips; connection points
(red), detected tips (green)

Fig. 3: Distance in pixels between tips (green)

the total number of tips detected in the ground truth data. The
mean of this percentage is then calculated over all images. Fur-
thermore, the mean distance between the tip of the ground
truth and the prediction is calculated. A total of 66.78% of
the tips identified in the ground truth could also be detected
in the prediction, with a mean euclidean distance of 8.37 pix-
els or 1.02% of the image resolution. In summary, the system
demonstrates a reliable capability to recognize tool tips effec-
tively.

Fig. 2 demonstrates an examples of misclassification. In
2a, a jaw component is identified erroneously. However, as no
connection can be identified, no tip is designated for this in-
strument, illustrated in 2b. It is found that specific jaw parts,
in particular forceps, do not have a closed contour. Given their
predicted configuration as two distinct segments, the identifi-
cation of the tip in these regions can potentially result in er-
rors. The results of the pixel distance between the instruments
is illustrated in Fig. 3. When the tips of the instruments are
successfully detected the pixel distance can be calculated. Us-
ing a calibrated 3d endoscope [10] would lead to the metric
distance.

4.3 Performance Comparison

The Mask R-CNN is also employed in the study [11] for the
EndoVis17 data set, achieving a mIoU of 0.6874. A more
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recent network the Segment Anything Model (SAM), has
demonstrated encouraging outcomes in the domain of instru-
ment segmentation [12]. The model has achieved an mIoU of
0.8820 for instrument type segmentation. The findings indi-
cate that the model achieves results that are about five per-
centage points lower than those reported in other studies using
the Mask R-CNN. Additionally, recent or revised models show
greater potential for improving segmentation outcomes.

To the best of the authors’ knowledge, the laparoscopic
surgery tip detection approach is the first of its kind in this
field, lacking a basis for comparison with other works. In [13],
the authors present an automatic tip detection method based
on supervised deep learning for surgical instruments in bi-
portal endoscopic spine surgery images. Similarly, [14] de-
scribes a method leveraging artificial intelligence for precise
localization of needle tips in ultrasound images during robot-
assisted interventions, achieving both pixel-accurate represen-
tation and metric positioning.

5 Conclusion

The findings indicate that the Mask R-CNN model effectively
detects instrument tips and calculates distances between them,
though it has limitations in precise segmentation for accurate
tip detection. Recent models may enhance this aspect. The
Mask R-CNN results are comparable to other studies using the
same model for instrument segmentation, and the tool detec-
tion implementation is straightforward, incorporating a sim-
ple condition to exclude outliers. The results rely heavily on
segmentation, which can lead to misclassifications or occlu-
sions affecting tip detection. Although the algorithm may rec-
ognize these issues, it can fail if the connection to another part
or boundary is not adequately established. The tip is defined
based on image data rather than the physical characteristics of
the instrument, resulting in variations in detection from dif-
ferent angles and instrument types. A tip may even be identi-
fied when not visible in the image, typically as the most dis-
tal point, aligning with human intuition and sufficing for this
task. This initial approach acknowledges potential improve-
ments for future work, such as using deep learning for direct
tip prediction and better instrument segmentation. Future stud-
ies will also incorporate stereo images to enhance research and
facilitate the calculation of Euclidean distance in metric units.

Overall, this work demonstrates, that a basic approach can
lead to a valuable tool to provide surgeons with a new feature
for the operating room. Future work should extend beyond the
instrument segmentation to include tissue segmentation, which
has the potential to directly facilitate the measurement of le-
sions.
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