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Abstract: Blood pressure (BP) is a key indicator for car-
diac diseases. Although many current works focus on esti-
mating BP using photoplethysmography (PPG), the number
of works using imaging PPG, i.e. PPG derived from videos,
and works to compare between different PPG settings is lim-
ited. This study compares BP estimation methods using re-
gression ensembles across contact and non-contact PPG set-
tings by means of absolute error (MAE), Pearson correlation
coefficient and feature importance. Our results show similar
BP estimation quality for both contact and non-contact vari-
ants. While MAE:s are, similar to comparable works, high (x~
13 mmHg and 8 mmHg for systolic BP (SBP) and diastolic BP
(DBP)), particularly for DBP and pulse pressure our analyses
yield promising correlation coefficients (> 0.7). We observed
notable differences in feature importance underlining the rele-
vance of acquisition setup and processing strategies. This work
highlights the potential of iPPG for BP estimation, although
further research is needed to fully understand the advantages
and limitations of both contact and non-contact methods.

Keywords: Photoplethysmography, Imaging Photoplethys-
mography, Blood Pressure Estimation

1 Introduction

Cardiovascular diseases are among the leading causes of mor-
tality worldwide. Blood pressure (BP) is a highly relevant
physiological parameter for disease prediction and health as-
sessment. Widely used techniques to capture BP involve ei-
ther an arm cuff-based sphygmomanometer or a catheter. De-
spite their widespread use, these methods have limitations, in-
cluding discomfort for the patient and the inability to provide
continuous measurements. Photoplethysmography (PPG) has
gained a lot of attention as a non-invasive and cost-effective
alternative for BP estimation. Among various settings to cap-
ture PPG signals, finger photoplethysmography (fPPG) is the
most commonly used setting for BP estimation.

However, PPG can also be acquired in different settings,
e.g. as it concerns the measurement site such as at the earlobe
(ePPQ), or with respect to the fixation, where remote measure-
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ments via camera, a technique known as imaging PPG (iPPG),
has gained much attention recently. Only few works have ad-
dressed differences in BP estimation considering the available
settings although deeper insights here might be beneficial to-
wards more reliable means to estimate BP from PPG.

In this work, we examine differences in BP estimation
using regression ensembles. We compare contact and non-
contact PPG modalities and provide a comparative analysis of
their efficacy and basic mechanisms of estimation in terms of
feature relevance.

2 Material and Methods

2.1 Used Data

We use fPPG, ePPG, iPPG, and BP recordings obtained from
an own experimental study. Within our experiments, multiple
physiological signals and video recordings of the face were
collected during both resting conditions and stimulus expo-
sure. In total, recordings from 43 subjects (29 male, 14 female;
aged 20-59 years) were included in this work.

iPPG signals were extracted from videos recorded by the
UI-3060CPC-HR Rev 2 RGB camera (IDS Imaging Devel-
opment Systems GmbH; Obersulm, Germany) at a distance
of approximately 40 cm, a resolution of 12 bit and a frame
rate of 25 fps. Videos covered the whole face and parts of
the shoulders. PPG (ePPG, fPPG) were recorded using biosig-
nal amplifiers Biopac MP36 (Biopac; Goleta, United States of
America) and reflective photoplethysmographic signal trans-
ducer SS4LA (Biopac; Goleta, United States of America). For
continuous reference BP assessment, Finapres Nova (Finapres
Medical Systems; Enschede, Netherlands) and thus the vol-
ume clamp method (VCM) was used.

The experimental protocol included three types of stim-
uli: the cold pressor test (CPT), tilting, and paced deep breath-
ing (PDB). Six tilt maneuvers were conducted starting from
a supine position (three head-up and four supine recordings).
Between tilting, there have always been epochs of 7min in
the respective position. In such epochs, CPT was performed
once or twice (randomly assigned) and PDB was performed
when CPT was not carried out. Overall, each recording lasted
approximately 49 minutes. More details on the study protocol
can be found in [3].

2.2 PPG Extraction
We use contact and non-contact PPG. Contact PPG (fPPG and
ePPG) were used as recorded. iPPG signals were extracted by

3 Open Access. © 2025 The Author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

338



= F. Sahl et al., Analysis of differences between contact and non-contact estimation of blood pressure

segmenting the facial region of each subject using Gaussian
Mixture Models and Level Sets following the approach de-
scribed by Woyczyk et al. [7]. For iPPG extraction, we con-
sider the Green (G) channel and the Plane Orthogonal to Skin
(POS) method. Considering a single color channel, the green
channel is known to have highest signal quality and has been
widely used in prior studies for both PPG measurement and BP
estimation [8]. The POS method, which combines raw RGB
channels, is also frequently employed in the literature and has
been shown to be very powerful [5]. All extracted PPG signals
have been resampled to 100 Hz. The subsequent processing of
contact and non-contact PPG signals equals all settings.

2.3 PPG Processing

Tab. 1: Extracted features for BP estimation. The column Signal
describes the base for the respective feature’s extraction Where
kern are features extracted from the two kernels, rec describes
features from the reconstructed pulse wave and org are features
extracted from the original PPG beat. If rec and org are given for a
single feature, this feature was calculated twice.

Category Signal Feature Description
kern Tsysdia time difference between systolic
and diastolic components (4 dif-
ferent variants of finding compo-
nents - 4 different features)
PWD kern W2 width of second kernel
kern Wi1 width of first kernel
kern P2 amplitude of second kernel
kern P1 amplitude of first kernel
kern T2 mode of second kernel
kern T1 mode of first kernel
kern Rlpeaks quotient of amplitudes of sys-
tolic and diastolic components
kern Rlarea quotient of area of diastolic wave
and area of systolic waves
rec,org freqd fourth harmonic
Frequency rec,org freq3 third harmonic
rec,org freq2 second harmonic
rec,org freql fundamental frequency
rec,org SD standard deviation
rec,org skew skewness
- rec,org kurt kurtosis
Statistical rec,org Height difference of minimum and max-
imum amplitude
rec,org  Width duration of pulse wave in s
rec,org PWHA pulse width at half amplitude
Derivative rec,org p maximum of first derivative
rec,org b/a quotient of amplitudes of b and
a wave of second derivative
Quality  org corrPPG mean correlation of PPG beat

compared to neighboring beats
in 10s window

PPG processing covers preprocessing and feature extrac-
tion and is based on the work of Fleischhauer et al. [2]. The

general pipeline consists of four main steps: data filtering, beat
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detection, pulse wave decomposition (PWD) and recomposi-
tion, and feature extraction. All PPG signals are bandpass fil-
tered between 0.4 Hz and 12 Hz to remove artifacts and noise.
Beat detection is performed using the AMPD beat detection al-
gorithm proposed by Scholkmann et al. [4], which detects the
onset of each beat. For each detected beat, the corresponding
signal segment (up to the next beat) is extracted, and subse-
quently multiple features are derived.

To capture the morphology of pulse wave, we extract 37
features from the original signal, the frequency domain, the de-
composed signal (kernel), and reconstructed PPG waveforms.
These features are categorized into PWD, frequency, statis-
tical, derivatives, and quality features. PWD uses two kernel
functions (a gamma function and a Gaussian function), as they
provide stability and minimize noise through reconstruction.
The gamma distribution is particularly suited for modeling the
rising edge of the PPG waveform and is therefore used as the
first kernel [2]. Features considering a whole beat waveform
are extracted from both the original and reconstructed signals.
An overview of the extracted features is provided in Tab. 1.

2.4 BP Estimation

The reference BP values are obtained from beat-to-beat SBP
and DBP measurements using the Finometer. SBP and DBP
values are smoothed using a median filter within a 10s win-
dow and 1 s sliding step, resulting in one BP value per second.
Obvious outliers (SBP < 70 mmHg and DBP < 40 mmHg) are
replaced by the closest value above these thresholds. PP is then
calculated from the difference between SBP and DBP.

BP estimation is performed using decision trees as re-
gression ensembles with bagging for each detected beat in the
PPG. Each beat and belonging feature set is mapped to the
closest corresponding reference BP values, allowing estima-
tions of SBP, DBP, and PP per beat. We implemented a leave-
one-subject-out-cross-validation (LOSOCYV). Due to the com-
putational complexity of LOSOCYV, only every 20th beat and
belonging feature set is used for training. The estimated BP
values per beat are finally smoothed using a Gaussian moving
average filter within a sliding window of 15s.

2.5 Metrics

The performance of the BP estimation is evaluated using mean
absolute error (MAE) and Pearson’s correlation coefficient (r)
according to

1 N
MAE = > lui = 3l )
=1
and
N NN =
. >im1 (Wi —9) (i — 9)
N _ N ~ =
\/Zi:l(yi —9)? 2= (i — 9)?
where N is the number of instances, y; represents the reference
BP and §; is the corresponding estimated BP. 4 and 7 denote
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the mean values of the reference and estimated BP, respec-
tively. MAE and r are computed for each test subject, and the
median results over all subject are reported. To allow a quan-
titative assessment of our performance for MAE, we imple-
mented a mean estimator that consistently predicts the mean
SBP, DBP and PP of the training set.

To analyse the function of the different variants, we anal-
ysed the feature relevance for each BP estimator by calcu-
lating predictor importance using a built-in Matlab function.
For each feature and decision tree split the method sums up
the changes in the node risks (mean squared error of node
weighted by node probability) and divides it by the number
of branches. A feature with no contribution to the estimation
process has a predictor importance value of zero.

To avoid inadequate parameter settings to negatively af-
fect BP estimation, we performed a constrained grid search,
varying the number of variable splits, the minimum leaf size,
and the number of base classifiers. The optimal parameter con-
figuration was selected based on the highest mean of median
correlation coefficients and the greatest percentage reduction
in MAE relative to the mean estimator for SBP, DBP, and PP.

3 Results

Our quantitative results are presented in Tab. 2. The MAE is
slightly improved compared to the mean estimator (except for
SBP in iPPG POS and fPPG), where improvements in SBP are
minor than in DBP and PP. While the correlation coefficient
for SBP is low (fPPG shows highest correlation with 0.42),
DBP and PP show high correlations up to 0.72 and 0.78 for
DBP and PP. Such results indicate the difficulty of absolute BP
estimation without calibration. Found correlation coefficients
in turn, at least for DBP and PP, are promising.

Notably, best results were obtained according to the quan-
tity and quality measure using different settings, ePPG for
MAE and fPPG or iPPG POS for correlation.

Tab. 2: Results for BP estimation across all PPG variants. The
Mean Estimator represents the error between the test data and
the mean of the training data (using fPPG in this case). Since the
mean estimator predicts a single continuous value, r is not given.

Type MAE in mmHg r without unit
SBP | DBP | PP | SBP | DBP | PP
fPPG 14.16 | 9.05 | 7.38 | 0.42 | 0.72 | 0.72
ePPG 1151 | 7.72 [ 7.07 [ 0.20 | 0.68 [ 0.68
iPPGPOS | 1353 | 8.96 | 7.27 [ 022 | 0.70 | 0.78
iPPG G 1320 | 881 [7.26 | 0.21 | 0.66 [ 0.75
Mean Estimator | 13.28 | 11.01 | 9.03 | n.a. | na. | na.

Considering feature importance, we calculated the predic-
tor importance for each model in LOSOCY, for each PPG set-
ting and for SBP, DBP and PP. As a representative example,
fig.1 shows the importance of features for DBP estimation.

Notably, Tsydgia (and its variants) distinctly contribute to BP
estimation across all four models. Additionally, in iPPG POS,
features related to the absolute amplitudes of the PPG signals
(including the original, reconstructed, and kernel signals) and
their first derivatives are particularly influential. In contrast, for
iPPG G, the feature b/a has a substantial impact on the results.
For ePPG, b/a is also among the best five features, with the top
four features being variants of Tgygqia. T2 also contributes to
the BP estimation by fPPG.

4 Discussion

Overall Results: Although our results, particularly the MAE
and SBP estimates, do not indicate satisfactory BP estima-
tion, they are consistent with findings in the literature where
subject-wise test-train splits are applied and no calibration was
performed. Studies reporting better performance often employ
less stringent data splitting or some form of calibration. [8]
However, r yields for DBP and PP across all PPG variants
promising results, even under strict data splitting.

Feature Importance: As already stated, Tgysaia (and its
variants) consistently appear as the most important features for
DBP estimation across all models. Tgysgia describes the time
between the systolic and diastolic peak of a pulse wave, which
correlates with the time it takes for the pressure to propagate
from the heart to the periphery and back [1]. When vessels
are stiffer, the SBP and pulse transit time increases, and thus
Tyysdia also increases [6]. Moreover, Webb [6] has stated that
arterial stiffness is a strong indicator for DBP, even more than
for SBP. Notably, the relationship between DBP and arterial
stiffness is inverse e.g. an increasing arterial stiffness, repre-
sented by (Tgysgia), corresponds to a lower DBP. For fPPG T2
also contributes to the BP estimation with high importance.
T2 and Tysq;a are highly correlated and of similar importance.
The effect of stimuli are most prominent in fPPG signals due to
vasconstriction and centralization [3]. Therefore changes in T2
might be more prominent in fPPG. Moreover, fPPG is known
to have the best signal quality which leads to a more stable T2.

An interesting finding is the high feature importance for
features considering absolute amplitudes in iPPG POS. It is
reasonable that absolute PPG amplitude relate to BP. How-
ever, when pressure is applied to the measurement site and
without proper normalization (DC levels are assumed to affect
amplitudes), absolute amplitude are hardly comparable across
subjects and situations. POS bypasses both making absolute
amplitudes a highly relevant feature.

Moreover, the feature b/a is highly prominent in iPPG G
and also has some influence in ePPG but not in iPPG POS
and fPPG. Since b/a is extracted from the second derivative, it
is very sensitive to morphological changes in PPG beats. As
POS is a combination of all RGB channels with a focus on
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Fig. 1: Feature importances for DBP estimation by iPPG POS (top left), iPPG G (top right), fPPG (bottom left), ePPG (bottom right).

Each Boxplot contains feature importances for all subjects.

keeping the pulsation, not on morphology, it is possible that
the morphological characteristics of the beats in this variant
might be lost. For ePPG, the impact of b/a is lower compared
t0 Tgysdia While in iPPG G these features are of comparable im-
portance. This might be due to the contact pressure of ePPG,
which can affect the PPG waveform morphology (that also
holds for fPPG).

Limitations: There are limitations to our work, which
should be kept in mind. Amongst others, iPPG was measured
under laboratory conditions and thus signal quality is high
compared to real world settings. Moreover, our blood pressure
reference can be impaired, e.g. due to centralization. Accord-
ing to visual inspection, especially our reference SBP might
be influenced in some cases obviously impacting the quantita-
tive results. As we detect the beats automatically, the chosen
detection algorithms might impact the results of beat-to-beat
BP estimation as well.

5 Conclusion

In summary, iPPG shows few deviation in absolute BP estima-
tion and correlation compared to contact PPG. The absolute
results are consistent with comparable works from the liter-
ature and need further improvements but results of DBP and
PP (MAE and r) are promising. The importance of iPPG fea-
tures for BP estimation highly depend on the iPPG extraction
algorithm. Further research is needed to develop extraction
methods that ensure high signal quality, preserve morpholog-
ical beat information, and enable consistent interpretability.
Additionally, comparisons between contact and non-contact
PPG will be extended to analysis of functionality across spe-
cific experimental conditions (tilting, PDB, and CPT).
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