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Abstract: Epilepsy represents a chronic non-communicable
brain disease which affects about 70 million people world-
wide. The condition presents with recurring seizures which
produce brief periods of unmanageable movement. EEG
serves as the primary diagnostic instrument for epilepsy di-
agnosis to date. We examined seizure EEG signals from Phys-
ionet database based on Hjorth parameters (Activity, Mobility,
Complexity), k-Nearest Neighbors (k-NN), Random Forest,
and Decision Tree. The results (between 0.9827 and 0.9999
of accuracy) demonstrate that Hjorth parameters can be used
for detecting seizure episodes, despite class imbalance in the
dataset. The best-performing approach was the hybrid system
based on the Random Forest (1.0000 of accuracy).
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1 Introduction

Epilepsy is a chronic neurological disorder affecting approxi-
mately 70 million individuals globally, characterized by recur-
rent seizures due to excessive neuronal electrical discharges.
Seizures range from brief lapses of attention to severe convul-
sions, varying in frequency and intensity. Diagnosis typically
requires two or more spontaneous seizures [1].
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Despite advances in imaging, electroencephalography
(EEG) remains critical for epilepsy diagnosis and classifica-
tion [2]. EEG data reflect changes in spatial and temporal pat-
terns indicative of different brain states: preictal (preceding
seizures), ictal (during seizures), postictal (after seizures), and
interictal (between seizures). Accurate identification of preic-
tal states is essential for seizure prediction [3].

Machine learning has significantly improved seizure pre-
diction by applying noise reduction, feature extraction, and
classification methods [4, 5]. The features include spectral
power [6], phase locking value [7], bag-of-waves [8], and
zero-crossing measures [9]. Support Vector Machines (SVM)
have frequently been used to distinguish preictal from interic-
tal phases effectively [10, 11].

Recently, Convolutional Neural Networks (CNNs), have
been applied for EEG-based seizure prediction due to supe-
rior feature extraction capabilities [12—14]. However, for real-
time, mobile, or low-power applications, Hjorth parameters
are preferred due to the lower computational cost and compa-
rable performance (up to 97.9% accuracy in seizure detection)
[15, 16].

In this study we evaluated the classification of seizures
based on Hjorth parameters (Activity, Mobility, Complexity)
obtained from EEG signals and three machine learning tech-
niques: k-Nearest Neighbors, Random Forest, and Decision
Tree.

2 Material and Methods

2.1 Hjorth Parameters

Hjorth parameters, also known as normalized slope descrip-
tors (NSDs), are statistical functions that represent EEG sig-
nal properties in both time and frequency domains that were
introduced by Bo Hjorth in 1970 [17, 18]. They include activ-
ity, mobility, and complexity [17], which approximate signal
activity and mean power, mean frequency. and the signal band-
width, respectively, and are calculated as follows [17, 18]:
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where o2 is the variance of the EEG signal z, o is the stan-
dard deviation of x, o4 is the standard deviation of the first
derivative of x, and 044 represents the standard deviation of
the second derivative of x.

To calculate the collection of Hjorth parameters, we used
an optimal sliding window and stride based on the method de-
scribed in [19].

2.2 EEG signal dataset

To assess the proposed model’s performance, we utilized the
CHB-MIT dataset, which was acquired in partnership with
MIT University and Boston Children’s Hospital and is pub-
licly available. This data set includes EEG recordings from 23
people who had uncontrolled seizures [20-22].

This dataset comprises EEG recordings from pediatric pa-
tients with intractable seizures. The patients were monitored
over several days after discontinuing anti-seizure medication
to understand their seizures better and evaluate their suitabil-
ity for surgical treatment.

All signals were recorded at 256 Hz with a 16-bit resolu-
tion. Most files include 23 EEG signals, although some contain
24 or 26. The recordings were conducted using the Interna-
tional 10-20 system for EEG electrode placement and nomen-
clature [20-22].

Every EEG signal (and channel, respectively) were an-
alyzed, and the descriptors were calculated accordingly. Us-
ing the annotations provided by PhysioNet for the analyzed
database, we labeled ‘1 for positions where a seizure occurred
and ‘0’ where there was no seizure.

2.3 Analysis methods

The statistical significance of the Mobility, Activity, and Com-
plexity descriptors was then assessed using ANOVA testing.
Next, we used three machine learning algorithms to further
evaluate the data, namely k-Nearest Neighbors (k-NN), Ran-
dom Forest, and Decision Tree. Their performance was evalu-
ated in terms of their ability to effectively categorize and pre-
dict using the Hjorth parameters as cross-validation loss, accu-
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racy, precision, recall, and F1 score. The dataset was split into
training and validation sets with an 80%/20% ratio.

3 Results

Table 1 presents the p-values obtained from the ANOVA anal-
ysis.

Tab. 1: ANOVA Results (p-values)

Activity | Mobility | Complexity |

1.4354e-65 | 1.4029e-32 | 7.9495e-54 |

As observed, all values are close to zero, indicating sub-
stantial differences among the groups. To analyze the results
thoroughly, we have prepared box plots to show the statistical
meaning of the results, which are shown in Fig. 1.

a b ©

Fig. 1: Box plots of the Hjorth parameters. Graphs (a) presents
Activity, (b) Moblility, and (c) Complexity, respectively.

Then, we implemented three classifiers to obtain final re-
sults (Fig. 2), showing confusion matrices.
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Fig. 2: Confusion Matrices. The section relates (a) to k-NN, (b)
Decision Tree, and (c) Random Forest.

To ensure the validity of our findings, we implemented
various metrics to evaluate the classifiers. The results are de-
tailed in Table 2.



Tab. 2: Classifier Metrics

Metrics Classifier
Decision Tree | k-NN | Random Forest
Cross-validation 0.0188 0.0201 <0.0001
loss
Accuracy 0.9812 0.9799 1.0000
Precision 0.5385 0.4211 1.0000
Recall 0.1308 0.0998 0.9994
F1 score 0.1996 0.1684 0.9997

4 Discussion and Conclusions

In this study, we evaluated three machine learning models (k-
NN, Random Forest, Decision Tree) for detecting seizures in
EEG signals based on Hjorth parameters. Our results for the
Random Forest (accuracy of 1.0000, precision of 1.0000, re-
call of 0.9994, and F1 score of 0.9997) show an improve-
ment over approaches based on multi-view CNN (sensitivity
of 0.93) [23], iterative channel selection, Haar wavelet and
Support Vector Machine (accuracy of 0.94 and sensitivity of
0.96) [13], CNN + Bi-LSTM (bi-directional Long Short-Term
Memory) and DCAE (deep convolutional autoencoder) + Bi-
LSTM (all metrics ranging between 0.9960 and 0.9972) [24]
and Graph Attention Network (GAT) and Temporal Convo-
lutional Network (TCN) using the same dataset (accuracy of
0.9871, specificity of 0.9835, and a recall of 0.9907) [25], and
wavelet with 1D convolutional layers and multi-head attention
mechanism (0.9983 of accuracy) [26].

Rizal et al. report in [15] similar results (the best accuracy
of 0.995) to those reported in our study using a similar ap-
proach. However, they rescaled the EEG signal into new sig-
nals using the coarse-graining procedure, where the new signal
is the average of the closest sequential samples. Subsequently,
the Hjorth parameters were calculated on these new signals.
These features were later used for classification using differ-
ent Support Vector Machines (SVMs).

Combining Hjorth parameters of the EEG signal with
machine learning techniques for epilepsy seizure detection
yielded superior results, especially with Random Forest
method, forming a hybrid system with a low computational
cost.

However, the precision of 0.1308 and 0.4211, recall of
0.1308 and 0.0998, and F1 score between 0.1996 and 0.1684
for Decision Tree and k-NN, respectively, despite an accuracy
over 0.97 indicate the significant class imbalance between true
positive (label 1) and true negative (label 0).

J. Chwat et al., Hjorth parameters in seizure =

Based on the evaluation, the Random Forest classifier out-
performed both the k-NN and Decision Tree algorithms. The
model reached almost flawless results by producing an accu-
racy of 1.0000 and recall of 0.9994 and precision (PPV) of
1.000. The high performance level indicates that the model
demonstrates excellent generalization capabilities to detect
seizure events without generating incorrect positive results.

Importantly, Random Forest demonstrated strong resis-
tance to class imbalance problem which affects EEG-based
seizure detection because seizure events appear much less fre-
quently than non-seizure data. Random Forest achieves its
resilience through its ensemble structure which trains multi-
ple decision trees on data subsets. This technique enables in-
dividual trees to learn minority-class patterns better because
seizure events are frequently sampled during training which
leads the ensemble to recognize these patterns accurately. The
outcome produces a highly sensitive and specific model which
effectively detects seizure activity in this particular unbalanced
class distribution.

The present work is not without limitations; namely, it
relies on a single dataset (CHB-MIT) and is affected by the
prominent class imbalance within that dataset [20-22], which
significantly affected the classification results for k-NN and
Decision Tree, and therefore limits the generalizability of our
findings.

For further studies, we recommend using additional
datasets mentioned in Wong et al. [27], such as University of
Bonn dataset, NeuroVista Ictal, Helsinki University Hospital
EEG, Siena Scalp EEG, Neurology and Sleep Centre Hauz
Kha datasets, considering the use of a visualization of the EEG
signal with Garmian Angular Fields proposed in [28], use of
more classifiers, and minimizing the clas imbalance.
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