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Abstract: As materials such as Poly-Lactic Acid (PLA) have
become a significant part of medical production and research,
it is important that the resulting products adhere to strict regu-
lations concerning contaminations. A wide variety of methods
are currently used to comply with these regulations depending
on the products and their intended use case.

We propose a standardized workflow for high-sensitivity con-
tamination detection in X-ray photoelectron spectroscopy
(XPS) survey scans that helps enhance detection reliability,
reduce throughput constraints associated with manual analysis
and streamline an automated analysis. This makes XPS a more
viable option for process monitoring and reduces the need for
additional analysis steps.

The workflow uses a neural network trained on synthetic
signals to predict contamination at%. These are then com-
pared with individually variable contamination limits to clas-
sify each contaminant.

Keywords: XPS, X-ray Photo Electron Spectroscopy, Con-
tamination Detection, Machine Learning, Synthetic Dataset

1 Introduction

Poly-Lactic Acid (PLA) is a biodegradable polymer that has a
multitude of medical applications due to its biocompatibility,
biodegradability, and versatility. Common use cases are im-
plants and drug delivery systems. For such applications it is
important to reduce risks of contamination to prevent inflam-
matory responses, degradation or allergic reactions [1-3].

The detection is highly dependent on instruments used,
needed depth of detection, destructive or non-destructive
analysis, amount of measurements and necessary accu-
racy. Existing methods use Fourier Transform Infrared
Spectroscopy (FTIR), Raman Spectroscopy, Pyrolysis-Gas
Chromatography-Mass Spectrometry (Py-GC/MS) and X-ray
Photoelectron Spectroscopy (XPS).
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Unlike FTIR and Raman, XPS provides nanoscale surface
sensitivity (<10 nm depth), enabling direct detection of con-
taminants critical to medical device biocompatibility [4, 5].

Furthermore, XPS is vital for batch testing in pharmaceu-
tical packaging as survey scans (200 eV pass energy) achieve
full elemental inventories in <10 minutes. FTIR and Raman re-
quire further deconvolution to distinguish overlapping organic
bands and Py-GC/MS is limited to volatile organics [6, 7].

Finally, non-destructiveness is critical for implantable de-
vices requiring multifactorial validation. FTIR, Raman, and
XPS fit this requirement, offering complementary insights.
While FTIR and Raman provide molecular fingerprinting
across the sample, XPS delivers precise elemental analysis of
the outermost 10 nm surface - critical for biocompatibility.
Though Py-GC/MS requires pyrolysis (destroying pg-scale
samples), this is often acceptable for quality assessment. Its
limitation lies in detecting only volatile thermal decomposi-
tion products [5, 7].

We therefore have chosen XPS as our contamination de-
tection method due to its unparalleled surface sensitivity and
quantitative elemental identification capabilities, critical for
detecting trace contaminants in medical devices [8, 9]. How-
ever, traditional XPS analysis is inherently time-consuming,
as it depends on manual peak fitting and interpretation. This
requires trained experts and can become error-prone as well as
limit throughput for large-scale quality control [10, 11].

To address these limitations, we propose an ML-driven
workflow combining regression models for atomic percent-
age (at%) prediction with contamination threshold classifica-
tion, enabling automated high-sensitivity survey scan analysis.
Our approach improves detection reliability while addressing
the significant throughput limits of ~10 samples/day via man-
ual XPS vs. 100+ via automated FTIR/Raman. By enabling
real-time analysis of thousands of XPS signals, we bridge this
gap while preserving XPS’s surface specificity, particularly for
halogenated contaminants critical to PLA’s biocompatibility
and degradation in medical applications.

2 Method

As exemplary contaminants, we have chosen chloride (CI),
which may originate from saline rinsing or bleach residues,
fluorine (F) potentially leaching from equipment made of
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poly(vinylidene difluoride) (PVDF) and silicon (Si) from sili-
cone mold release agents. These can be substituted with others
depending on the manufacturing context. The necessary data
for training and testing is generated synthetically, as freely
available XPS measurements are not sufficiently available.

The application of the workflow is shown in Figure 1. Af-
ter manufacturing or handling of the PLA-based product, an
XPS survey scan is done. A trained neural network then pre-
dicts an at% for each contaminant. Based on these values a
subsequent classification can be executed using a contamina-
tion limit. Here, the limit is set to 0.1 at%, which according
to Lefebvre et al. [12] is the general order of the elemental
sensitivity of XPS.

XPS Survey Scan

Regression Model

PLA handling or
manufacturing
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Fig. 1: Workflow of the contamination detection

To predict contaminants as an output of the neural net-
work, we first need synthetic input signals to train the neural
network. The data pipeline to generate synthetic survey sig-
nals is based on our previous work which was focused on XPS
detail scans [13]. The previously used background method is
replaced to accommodate survey signals with a wider range of
binding energies. Additional parameters as in width and noise
type are adjusted for the generation of realistic survey signals.
An illustrated overview of the updated data pipeline is shown
in Figure 2. It consists of three main steps: Generation of *pure
peaks’, a ’background’ and a final addition of "noise’ to create
a synthetic survey signal.

As first step, we generate a signal that consists of "pure
peaks’ for each chemical state (brown signal in Figure 2). To
accomplish this, we first define peak parameters and sample
at% labels for contaminants and PLA. These labels are con-
verted into peak areas, which are then used to generate and
combine individual peaks, reconstructing the synthetic spec-
trum.

In Table 1, the chemical states of all involved elements
as well as their peak center binding energies (BE), peak width
ranges (Full Width Half Maximum, FWHM) and Relative Sen-
sitivity Factors (RSF) are listed. The chosen FWHM ranges
are broader than usual detail scan ranges. This is based on the
use of higher pass energies during survey scans to maximize

331

1. Pure Peaks 2. Background 3. Noise
Peak Background Noise Synthetic
Parameters Parameters Parameters Signal
7 —— Final Signal
Poisson Noise
—— Peaks+Background F
- —— Background (Rnd.) ¢
—— Background (Tgd.) Cl Si
—— Pure Peaks ¢ ¢
| 3.
ot b o G
\
\ 2.
7JA¥J/ e 5
4 A 1.
T T r : . .
1000 800 600 400 200 0

in broader peaks.

Binding Energy in eV

Fig. 2: Pipeline for the generation of synthetic survey signals

throughput across a wide binding energy range which results

Tab. 1: Peak parameters for chemical states of contaminants and

Chemical state | BE /eV | FWHM /eV | RSF
C1s(C-C,C-H) | 285.0 2.5-4.0 1

C 1s (C-0) 286.8 2.5-4.0 1

C 1s (C=0) 288.8 2.5-4.0 1

0 1s (C=0) 531.8 3.0-45 2.93
0 1s (C-0) 533.6 3.0-45 2.93
Si 2p (Si-C) 101.8 2.5-4.0 0.817
Si 2p (Si-0) 103.5 2.5-4.0 0.817
CI" 2p3/2 198.7 2.5-4.0 2.29
CI 2p1/2 200.3 2.5-4.0 2.29
F1is 688.0 3.0-4.5 4.43

We keep the possible at% for each contaminant within a
reduced range of [0, 5]. This limits the scope to residues, re-
duces training with unnecessary data and can be adapted to
specific use cases. Therefore, the base at% labels for the con-
taminants (Si, CI", F) are each uniformly sampled from a range
of [0.0, 5.0]. Si and CI" with more than one chemical state are
split by multiplying them with another uniformly sampled ar-
ray (range [0.0, 1.0]) to allocate varying shares to each state.

Afterwards, the PLA chemical states are uniformly sam-
pled from [0.0, 1.0] and normalized to the remaining at% not
occupied by contaminants. From these final atomic shares, we
then calculate the peak area shares using the given RSF from
Table 1 by dividing each atomic share with the respective RSF.
The additional peak parameters are uniformly sampled from
the given ranges of Table 1.

Now, for each chemical state a pseudo-Voigt peak is cre-
ated with the FWHM, normalized to an area of 1 and multi-
plied with its peak area share. Adding all ’pure peaks’ together



A. Orth et al., ML-Driven Contamination Classification for XPS Analysis of PLA Surfaces

gives the base signal. This is repeated for the required amount
of synthetic signals. In Figure 3 three different contamination
levels are displayed with equal parts for all contaminants.

— [5.0, 5.0, 5.0] at%
B [1.0, 1.0, 1.0] at%
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Fig. 3: Comparison of peaks at different contamination levels

Next, we address background generation as second step
in our data pipeline (Figure 2). While the pseudo-Shirley
method used in [13] was sufficient for generating basic de-
tail scan backgrounds, we want to account for more complex
effects. Therefore, we generate a multitude of backgrounds
based on different functions to train the network to focus on
contaminant peak areas in relation to PLA. This method uses
a Tougaard ("Tgd.’, purple) and variable (’Var.’, red) compo-
nent. Both components require parameters that are sampled
within predefined ranges to generate realistic backgrounds.

The *Tgd.” component is based on the Tougaard method
[14], which is used to subtract backgrounds with high amounts
of inelastic scattering. It is an iterative method that uses an
inelastic electron scattering cross-section K for which the 2-
parameter approach in Equation 1 is mostly used. The param-
eters B and C' shape the calculated background depending on
material parameters and previous know-how.

Bz

K@) = crop

6]
In our modified Tougaard approach, we sample B and C' with
interdependent values that are larger than typical, reflecting
the specific requirements of our use case, before scaling the
resulting component.

The additional variable component *Var.” is added to ac-
count for more than the shape of an immediate scattering
background. For each peak, a shape is randomly chosen from
the base trail types (’linear’, ’quadratic’, ’exponential’ and
’mixed’). These types define the general function of the back-
ground component for each single peak to emulate the shapes
in Tougaard et al. [15] based on different surface concentration
distributions. The functions use a sampled gradient parameter
for a general trend and an additional scaling parameter.

The two background components are then combined,
smoothed with a Gaussian filter to generate the final back-
grounds for our survey signals, and added to the "pure peaks’.

For the final step in Figure 2 (orange and blue signal),
the base signals are normalized to [0, 1] and Poisson noise is
added. As Poisson noise calculation depends on the supplied
signal values and its gradients, it is temporarily scaled and off-
set to generate different amounts of noise.'

Following dataset generation, we train a CNN-based re-
gression model on synthetic signals to predict at% for each
contaminant. The predicted at% are then evaluated against pre-
defined contamination limits to classify contamination events.

The model uses three 1D convolutional layers (Conv1D)
with increasing filter counts (16, 32, 48), kernel size of 9 and
ReLu activation to extract features from the XPS signal. Each
Conv1D is followed by a max-pooling layer to reduce dimen-
sionality. After flattening the output from the Conv1D, a dense
layer with 128 neurons processes these features. The output
layer has 3 neurons with ReLu activation functions, producing
independent probability values for each contaminant.

Root Mean Squared Error (RMSE) was chosen as loss to
train the model. We utilize Adam with a base learning rate
of 1e~* as optimizer and adjusted with the Keras class 'Re-
duceLROnPlateau’. To prevent unnecessary training epochs,
Keras’ EarlyStopping feature was applied. For result compar-
ison, RMSE and standard deviations of each contaminant pre-
diction are used as well as subsequently calculated accuracies
based on the contamination limit of 0.1 at%.

3 Results

For the final results, the data pipeline was used to create
2,000,000 synthetic signals within 40 minutes. The data is split
into two parts of 80 % training and 20 % testing, of which the
training part is further split (80 % for actual training, 20 % for
validation). The training of the model took 23 minutes on an
NVIDIA RTX 3090 Ti and was stopped after 80 epochs.

The overall achieved RMSE is 0.003 with a standard devi-
ation of (0.00179, 0.00173, 0.00283) for each contaminant (Si,
CI', F). Converting the regression predictions to binary values
with the contamination limit at 0.1 at% for each contaminant,
the overall accuracy scores 98.34 %.

Figure 4 shows the prediction error of the model in a his-
togram. From this can be derived that 98.71 % of the predic-
tions have an error below 1 at%, 91.72 % below 0.5 at% and
still 37.38 % remain below the elemental sensitivity of XPS
at 0.1 at%. Comparing predictions with the highest (blue) and
lowest error (orange) in Figure 5 shows the highest predic-

1 Offset values from a range of [1, 100] and multipliers from [250, 5000]
are sampled. Higher offsets generate higher and more uniform noise across
the signal while lower multipliers generate stronger noise around peaks.
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Fig. 4: Histogram of prediction error (abs(true - predicted) at%)

tion error for the prediction with a lower signal-to-noise ratio
(SNR). This is a general trend as the more extreme Poisson
noise can partially mask contamination peaks. As survey scans
tend to have higher SNR, this benefits our prediction accuracy.
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Fig. 5: Comparison of best and worst prediction

4 Conclusion

Standardizing contamination detection for medical materials
like PLA using XPS survey scans and accelerating throughput
is an important task. The findings of Baer et al. [10] with only
40 % of XPS signals classified as “'minor’ or 'no issues’ show
the urgent need for robust assistive solutions. Our workflow
addresses this by enabling high-throughput XPS-based con-
tamination detection, achieving 98.34 % classification accu-
racy for multiple contaminants. By combining XPS’s surface-
specific elemental precision with automated, consistent impu-
rity detection, we establish a practical solution for medical
manufacturing quality control where trace contaminants di-
rectly impact PLA biocompatibility.

While these results are demonstrated in a limited scope,
next steps include validation on real-world data and incorpora-
tion of e.g. compound ratio constraints. The method’s modular
design allows extension to other materials and extension with
detail scan analysis from our prior work.
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