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Abstract: Passive Acoustic Mapping (PAM) is a technique
used to localize cavitation events in biomedical applications
such as targeted drug delivery, histotripsy, and lithotripsy. Ac-
curate cavitation mapping is essential for optimizing therapeu-
tic efficacy and safety. However, conventional PAM assumes a
homogeneous speed of sound within tissue, which does not
reflect the heterogeneous acoustic properties of biological me-
dia. In this work, we introduce the Fast Marching Method
(FMM) to PAM for accurately computing time delays in ar-
bitrary speed of sound distributions. We evaluate the proposed
approach through simulations, demonstrating its potential for
improved cavitation mapping in realistic tissue environments.
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1 Introduction

Ultrasound-induced cavitation plays an important role in vari-
ous biomedical applications, including localized drug delivery
[1], histotripsy [2], and lithotripsy [3]. A significant area of
research is the use of focused ultrasound (FUS) to induce cav-
itation for blood-brain barrier (BBB) opening [4]. In this con-
text, the heterogeneous tissue environment introduces sound
speed variations, requiring aberration correction methods for
both ultrasound propagation and subsequent image formation.

To monitor cavitation events, ultrasound-based Passive
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Acoustic Mapping (PAM) [5] is commonly employed. This
technique utilizes an ultrasound array to passively receive
acoustic emissions from cavitation events, followed by beam-
forming in either the time or frequency domain [6] to re-
construct the cavitation source map. Common beamforming
approaches include Delay-And-Sum (DAS) [5], higher-order
Delay-Multiply-And-Sum (DMAS) [7, 8], the Robust Capon
Beamformer [9], and the Angular Spectrum Method (ASM)
[10]. However, most of these methods assume - in their stan-
dard form - a homogeneous speed of sound distribution, with
the exception of the adapted ASM.

In this work, we introduce the Fast Marching Method
(FMM) [11] to compute time delays for time-domain PAM
methods (time exposure acoustics PAM (TEA-PAM)). FMM
provides a flexible and efficient solution for handling arbitrary
speed of sound distributions and can be easily integrated into
various PAM techniques, unlike the ASM, which is limited to a
specific approach. Originally developed for seismic tomogra-
phy (as PAM [12]), FMM has also been applied in other fields
such as radar inversion [13]. In this contribution, the enhanced
Multistencil FMM (MSFMM) [14] is utilized with TEA-PAM.

2 Methods and Materials

2.1 Passive Acoustic Mapping

The passively received radiofrequency (RF) data 𝑠𝑛(𝑡) for the
𝑛-th transducer array element, located at (𝑥𝑛, 𝑧𝑛) = (𝑥𝑛, 0)

within an array of 𝑁 elements is utilized in a DAS scheme

𝑞(x, 𝑡) =
1

𝑁𝛼

𝑁∑︁
𝑛=1

𝑠𝑛(𝑡+ 𝜏𝑛(x)) (1)

to compute the source strenght 𝑞, with 𝛼 as the piezoelectric
coefficient. 𝜏𝑛(x) =

√︀
𝑧2 + (𝑥𝑛 − 𝑥)2/𝑐 is the time delay

from point x = (𝑥, 𝑧) with assumed speed of sound 𝑐 (see Fig.
2). After beamforming, the TEA operation is used to generate
the cavitation map of source intenstiy using

𝐼(x) =
1

𝜌0𝑐

𝑀∑︁
𝑚=1

𝑞(x,𝑚 ·Δ𝑡)2, (2)
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where 𝜌0 is the density of the propagation medium, Δ𝑡 is the
time discretization of the RF data and 𝑀 ·Δ𝑡 = 𝑇 denotes the
total time period.

The utilized parameter 𝑐 and 𝜌0 are assumed to be dis-
tributed homogeneously in the propagation medium. In real
tissue this is not the case and 𝑐 and 𝜌 are dependent on posi-
tion 𝑐 → 𝑐(x), 𝜌0 → 𝜌0(x). In this contribution, the speed of
sound distribution dependency of Eq. (1) for the time delay is
evaluated using the MSFMM. The combination of PAM with
the MSFMM is called FMM-PAM.

2.2 Fast Marching Method

The FMM is an iterative, grid-based numerical solver for the
Eikonal equation

|∇𝑡(𝑥, 𝑦, 𝑧)| = 1

𝑐(𝑥, 𝑦, 𝑧)
, (3)

where 𝑡(𝑥, 𝑦, 𝑧) represents the travel time (TT) wavefront, and
𝑐(𝑥, 𝑦, 𝑧) denotes the spatially varying speed of sound. Equa-
tion 3 is a high-frequency approximation of the wave equation,
describing wavefront propagation in heterogeneous media.

In the FMM framework, the computational grid is clas-
sified into three categories: alive, narrow band and far points.
Alive points correspond to grid nodes with finalized TT values
from previous iterations. Narrow-band points are neighboring
nodes of the alive set with trial TT values, whereas far points
compromise all remaining nodes yet to be processed.

The initialization step assigns the source node a travel
time of 𝑡 = 0 s and designates it as alive. The TT values of
adjacent grid nodes are then estimated using a first-order ap-
proximation using 𝑡 = Δ

𝑐 , where Δ represents the grid spac-
ing. These computed TT values are placed in the narrow-band
set. Subsequently, the narrow-band node with the smallest TT
is promoted to the alive set, and its neighboring nodes undergo
TT recomputation before being added to the narrow band. This
process iterates until all points are classified as alive.

Various FMM variants exist for TT estimation, includ-
ing the standard FMM, higher-order FMM, diagonal FMM,
and MSFMM, among others. The following discussion fo-
cuses on their application in two-dimensional (2D) domains,
although these methods extend naturally to three-dimensional
(3D) problems.

To implement MSFMM, uniform grid spacing across all
dimensions is needed, i.e., (Δ = Δ𝑥 = Δ𝑧). All FMM ap-
proaches aim to numerically solve the Eikonal equation in the
form

1

𝑐(𝑖, 𝑗)2
=

2∑︁
𝑣=1

max {𝐹 · (𝑡(𝑖, 𝑗)− 𝑡𝑣), 0}2, (4)

where 𝐹 depends on the approximation order: 𝐹 = 1/Δ for
first-order accuracy and 𝐹 = 3/(2Δ) for second-order approx-
imation. The indices (𝑖, 𝑗) denote discretized grid nodes in a
2D domain. Equation (4) can be solved using the quadratic
formula

𝑡(𝑖, 𝑗) =
−𝑏±

√
𝑏2 − 4𝑎𝑐

2𝑎
, (5)

where 𝑎, 𝑏 and 𝑐 are the quadratic, linear, and constant coeffi-
cients, respectively.

To integrate diagonal contributions in MSFMM, the com-
putational grid is rotated such that diagonal nodes are treated
as standard ones, after which TT values are computed using
the same iterative procedure. The modified grid spacing along
the diagonal is given by Δrot,1 =

√
2Δ.

For first order FMM, the travel times in Equation 4 are deter-
mined as

𝑡1 = min
{︀
𝑡𝑖−1,𝑗 , 𝑡𝑖+1,𝑗

}︀
; 𝑡2 = min

{︀
𝑡𝑖,𝑗−1, 𝑡𝑖,𝑗+1

}︀
. (6)

For second-order accuracy, they are refined as

𝑡1 = min

{︂
4 · 𝑡𝑖−1,𝑗 − 𝑡𝑖−2,𝑗

3
,
4 · 𝑡𝑖+1,𝑗 − 𝑡𝑖+2,𝑗

3

}︂
,

𝑡2 = min

{︂
4 · 𝑡𝑖,𝑗−1 − 𝑡𝑖,𝑗−2

3
,
4 · 𝑡𝑖,𝑗+1 − 𝑡𝑖,𝑗+2

3

}︂
. (7)

To further enhance the accuracy of MSFMM, standard and di-
agonal directional contributions can be combined as

𝑡(𝑖, 𝑗) =
−(𝑏+ 𝑏′) +

√︀
(𝑏+ 𝑏′)2 − 4(𝑎+ 𝑎′)(𝑐+ 𝑐′)

2(𝑎+ 𝑎′)
, (8)

where 𝑎, 𝑏, 𝑐 are the coefficients of the regular grid and 𝑎′, 𝑏′, 𝑐′

the coefficients in the diagonal direction. For PAM, the TT
wavefront are computed for the image region for each array
element. For the following simulation, only one TT wavefront
from the source position to all array elements is computed (see
Figure 1 Travel time Wavefront)

2.3 In Silico Evaluation

For the evaluation, RF data is simulated for a single cavitation
bubble located at x𝑏 = (0, 50 mm) using the model proposed
in [15]

𝑠𝑛(𝑡) =

20∑︁
𝑘=−20

𝑝𝑘
𝑑𝑛(x𝑏)

exp
{︂
−|𝑡− 𝑘𝑇0 − 𝜑𝑘 − 𝜏𝑛(x𝑏)|

𝜃𝑘

}︂
,

(9)

where 𝑇0 = 1/𝑓0 with 𝑓0 = 835 kHz representing the pulse
period, and 𝑘 is a counter for the current pulse period. The pa-
rameters 𝑝𝑘 (peak acoustic pressure), 𝜑𝑘 (phase offset), and 𝜃𝑘
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Fig. 1: Utilized speed of sound distributions 𝑐1 (homogeneous)
and 𝑐2 (heterogeneous) and their corresponding travel time wave-
front for a source at (𝑥, 𝑧) = (0, 50) mm. The bottom plot shows a
zoomed in area to compare the wavefronts.

(time constant) are modeled as normally distributed random
variables: 𝑝𝑘 ∼ 𝒩{3 MPa, 10 kPa}, 𝜑𝑘 ∼ 𝒩{1 µs, 14 ns},
and 𝜃𝑘 ∼ 𝒩{2 ns, 0.5 ns}, where 𝒩{𝜇, 𝜎} denotes a normal
distribution with mean 𝜇 and standard deviation 𝜎.

Two test cases are considered for evaluation. In the first
case, a homogeneous speed of sound 𝑐1 = 𝑐0 = 1540 m/s
is assumed, representing the conventional approach. This test
case serves to validate the performance of the FMM in a stan-
dard scenario, in comparison with TEA-PAM. In the second
case, a heterogeneous speed of sound distribution 𝑐2 is intro-
duced (see Fig. 1). For this case, Eq. (9) is modified such that
𝜏𝑛(x𝑏) = 𝑡FMM,𝑛(x𝑏) and 𝑑𝑛(x𝑏) = 𝑡FMM,𝑛(x𝑏) · 𝑐0, incorpo-
rating the FMM-based travel-time corrections.

The simulation setup is illustrated in Fig. 2. The trans-
ducer array consists of 𝑁 = 128 elements, with positions de-
fined as 𝑥𝑛 = (−19.05+𝑤pitch ·(𝑛−1)) for 𝑛 ∈ N, 1 ≤ 𝑛 ≤ 𝑁

and 𝑤pitch = 0.3 mm.

Fig. 2: Setup used in the simulation.

3 Results and Discussion

The simulation results using the MSFMM to compute the time
delays from the source position x𝑏 = (0, 50) mm are pre-
sented in Fig. 1 for both the homogeneous (𝑐1) and hetero-
geneous (𝑐2) speed of sound distributions. The computed TT
wavefronts for both cases exhibited a high degree of similar-
ity, with only minor deviations, as illustrated in the last plot of
Fig. 1. However, these small differences significantly impacted
source reconstruction, as demonstrated in Fig. 3, which com-
pares the results of standard PAM and FMM-PAM for both
speed of sound distributions.

For the homogeneous case, both standard PAM and
FMM-PAM yielded identical source reconstructions at
xPAM,1 = (0, 49.43) mm and xFMM-PAM,1 = (0, 49.43) mm.
This agreement was expected and confirmed the accuracy of
the TT wavefronts computed using the FMM. However, for
the heterogeneous distribution, the standard PAM method in-
correctly reconstructed the source at xPAM,2 = (0.53, 41.55)

mm, accompanied by strong artifacts. In contrast, FMM-PAM
accurately reconstructed the source at the same location as be-
fore, xFMM-PAM,2 = (0, 49.43) mm, demonstrating the poten-
tial of this approach for accurate passive acoustic mapping in
heterogeneous media.
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Fig. 3: Results for passive acoustic mapping (PAM) in combination
with the multistencil Fast Marching Methog (FMM-PAM) for a simu-
lated source at (𝑥, 𝑧) = (0, 50) mm.

4 Conclusion

In this work, we introduced the Fast Marching Method for
passive acoustic mapping in arbitrary speed of sound distribu-
tions. This approach enables aberration correction, leading to
improved source reconstruction. Using a standard simulation,
we demonstrated that while the standard TEA-PAM method
incorrectly mapped the source position in a heterogeneous
speed of sound distribution, the proposed FMM-PAM method
accurately reconstructed it.

However, it is important to note that this improvement is
only achievable if the speed of sound distribution is precisely
known in advance. This assumption is rarely met in practice.
Future studies will focus on reconstructing speed of sound
maps using travel-time inversion, which can then be integrated
into FMM-PAM. Ultimately, this method aims to serve as an
ultrasound-based technique for mapping ultrasound-induced
cavitation events during magnetic drug targeting [16–18].
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