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Abstract: Patients with pacemakers represent a high-risk
group for cardiovascular events. While deep learning has re-
cently shown promising results in detecting many abnormal-
ities in electrocardiograms (ECGs), little attention has been
paid to its performance in the presence of pacemaker activ-
ity. In this study, we evaluate the impact of pacemakers on the
performance of a state-of-the-art deep neural network (DNN).
Using the MIMIC-IV ECG dataset for validation, we com-
pared model performance between ECGs from patients with
and without implanted pacemakers. We observed a notable
decrease in performance in pacemaker patients compared to
non-paced patients (area under curve (AUC) 0.850 vs 0.770,
sensitivity 0.630 vs. 0.423). To understand this discrepancy,
we applied an explainable artificial intelligence (XAI) method
to analyze the relevance of the model’s predictions. Lead V1
was identified as the most relevant lead for the prediction of
the model, even in the presence of a pacemaker. In addition,
the false negative (fn) predictions of the model for pacemaker
ECGs were most influenced by the P wave segment in lead
V1. Our findings highlight the need for careful adjustment and
training of DNNSs in healthcare to achieve fair models that gen-
eralize well across diverse patient populations.
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1 Introduction

A pacemaker is an implanted device generating electrical im-
pulses to the heart, which provoke the heart to beat. Pacemak-
ers are indicated in various groups at cardiovascular risk, e.g.
dysfunctions of the sinus node or high-grade atrioventricular
blocks resulting in bradycardia. Hence, patients with a pace-
maker are a risk group, requiring careful monitoring of cardio-
vascular status. The electrocardiogram (ECG) is the standard
tool for cardiac assessment, offering a non-invasive and mul-
tidimensional perspective on the heart’s physiological activity.
Atrial fibrillation (AF) is a serious disease as it is associated
with an increased risk for other cardiovascular diseases such
as heart failure or stroke. In particular, paroxysmal AF often
occurs asymptomatically and intermittently, making it espe-
cially difficult to detect in single screening events.

While AF detection from ECG is well studied in the over-
all population [1], its detection is challenging in pacemaker
patients, where pacing artefacts can mask irregular rhythms,
but even with a pacemaker the risk of stroke remains elevated
[2]. Studies have shown that the annual incidence of AF after
pacemaker implantation is at least 5% and lifetime risk is es-
timated to be 30-50%. This is primarily due to advanced age
and a higher prevalence of cardiovascular comorbidities in this
patient population [3-5].

Moreover, ECGs from paced patients are challenging to
interpret. Modern pacemakers deliver short, low-voltage elec-
trical stimuli. Detection of these pacing artifacts can be chal-
lenging, especially at low sampling rates or with excessive fil-
tering. Hence, algorithms might fail to detect pacemaker activ-
ity and interpret the resulting waveforms as pathological find-
ings; e.g. pacing-induced QRS complexes are misinterpreted
as left bundle branch block or myocardial infarction [6].

Recently, DNNs have been suggested for the automatic
assessment of ECGs [7]. These might pave the way towards
novel screening programs to prevent cardiovascular events be-
fore their manifestation [8]. However, although studies have
developed multiple DNNs for automatic ECG processing,
there has been limited focus on analysing the performance of
pre-trained models when predicting ECGs from pacemaker pa-
tients. Thereby, in this work, we analyse the influence of pace-
maker activity on the performance of a state-of-the-art DNN
in detecting AF.
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2 Material and Methods

2.1 DNN model

We used a pretrained DNN for classification which was trained
on 2,322,513 Brazilian ECGs. It accepts an array representing
a 10-second 12-lead ECG as input and outputs a classification
of six different diagnoses (atrioventricular block, right bundle
branch block, left bundle branch block, sinus tachycardia, si-
nus bradycardia, and AF) [7]. However, in this work we limit
the analysis to the prediction of AF only.

2.2 Dataset

As a test dataset, we used the MIMIC-IV ECG dataset anno-
tated with ICD-10 diagnostic codes [9—-12] to analyze four sub-
groups: (i) AF patients with pacemaker, (ii) AF patients with-
out pacemaker, (iii) Non-AF control patients with pacemaker,
and (iv) Non-AF control patients without pacemaker.

AF-ECGs were included if patients had a diagnosis of
chronic AF (I48.2). Non-AF ECGs were included if ICD codes
were available for the corresponding hospital stay and no
diagnosis of AF (I48) was documented. A Non-AF control
ECG was selected and matched for sex, age (+1 year) and
pacemaker status (295.0/Z45.01). ECGs were excluded if pa-
tients had ICD codes indicating an implantable cardioverter-
defibrillator (Z45.02,Z45.09, 795.810), if signals were incom-
plete, or if the ECG was recorded before the first documented
pacemaker code. If a pacemaker code was documented during
a stay, all subsequent ECGs of that patient were considered to
have been recorded with a pacemaker. All prior ECGs of these
patients were excluded.

Using these criteria, we identified AF and Non-AF control
ECGs. In a final step, we performed 1:1 matching to obtain
balanced cohorts. This resulted in the subgroups i)-iv) with
each containing 541 ECG recordings in total.

2.3 Analysis

Using the DNN introduced in sec. 2.1, we predicted AF on
the MIMIC-IV subset and compared the AUC and confusion
matrices from patients with and without implanted pacemak-
ers. For the confusion matrices, we used the threshold (0.390),
which was provided alongside the DNN [7].

Furthermore, in order to examine how the model’s classi-
fication is influenced by the different ECG segments (e.g. P-
/T-wave, QRS complex), we used an established XAl pipeline
[13]. It is based on the integrated gradients method [14] and
assigns “relevance” values to each sample of an input ECG.
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Fig. 1: ROC curve for AF detection

These can be positive, if a sample is indicating towards AF
classification, or negative, if a sample is indicating towards a
non-AF classification. Previous research [13] has shown that
these effects are rather weak and require averaging over mul-
tiple ECG recordings to show clear effects. Hence, we cus-
tomized this to our data by averaging relevance values for each
subgroup i)-iv) by segmenting the generated relevances into
physiologically defined intervals (P-wave, QRS, S-T, T-wave),
and averaged absolute values across leads and segments.

3 Results

As shown in Fig. 1, the model achieved an AUC of 0.850 for
ECGs from patients without an implanted pacemaker, com-
pared to 0.770 for ECGs from paced patients. Tab. 1 shows that
specificity and precision were comparable between groups, but
the performance was better in ECGs without pacemakers, es-
pecially in terms of sensitivity (0.63 vs. 0.42). This resulted
in a lower number of fn in the non-pacemaker group (200 vs.
312), and a correspondingly higher number of true positives
(tp) (341 vs. 229), thereby showing a decreased performance
in the presence of a pacemaker.

Tab. 1: Classification metrics for AF detection

Group Acc. F1

ii) + iv) No Pacemaker 0.790 0.927 0.630 0.950 0.750
i) + iii) Pacemaker 0.690 0.909 0.423 0.957 0.578

Prec. Sens. Spec.
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Fig. 2: Mean relevance scores for tp (left column) and fn(right column) in AF classification, separately for groups i) and ii) (n=341, 200,
229, 312). The gray area under the curve reflects the summed positive and negative relevance.

Tab. 2: Most important ECG leads ranked by pos./neg relevances
for AF detection in ECGs.

Rank ii) + iv) No Pacemaker i) + iii) Pacemaker
1stpos. V1 (0.00332) V1 (0.00337)

2nd pos. V5 (0.00282) V3 (0.00237)
3rdpos. V3 (0.00261) V2 (0.00200)
1stneg. V1 (-0.00137) V1 (-0.00106)

2nd neg. 11 (-0.00096) Il (-0.00060)
3rdneg. 1(-0.00086) | (-0.00053)

Tab. 2 depicts the summed positive and negative relevance
for AF detection in ECGs without and with implanted pace-
maker. The most important lead for the model decision is lead
V1, in the presence or absence of a pacemaker.

Fig. 2 depicts the mean relevance that the model assigns
to the individual ECG segments in lead V1. A comparison be-
tween the tp and fn for the patient cohorts with i) and without
implanted pacemakers ii) shown. The further the curve devi-
ates from zero at a certain point in time, the more the model
has used this segment to decide in or against AF. Values close
to zero indicate that the corresponding segment was only of
minor importance for the model. Overall, we observed a de-
crease in the summed positive and negative relevance from tp
to fn across all ECG segments in lead V1. The overall rel-
evance decreased by 52.7% in patients without a pacemaker
and by 70.6% in patients with an implanted pacemaker. The

largest relative decrease was found in the T segment in pa-
tients without pacemakers (—67.0%) and in the ST segment in
patients with implanted pacemakers (—84.5%). In contrast, the
smallest difference was observed in the ST segment (—35.4%)
for patients without a pacemaker and in the P wave (—31.1%)
for patients with a pacemaker.

4 Discussion

A fundamental challenge of DNNs in healthcare is the fair-
ness of the models, with their generalization capabilities being
an important part of ensuring fairness [15]. Models should not
only perform well on the training data, but also work correctly
on new, unknown data [16]. Our results demonstrate this is-
sue in the context of AF detection in ECGs: the model per-
formance decreased from an AUC of 0.850 to 0.770 in paced
patients. In particular, sensitivity dropped from 0.63 to 0.42
(Tab. 1). This could be a result of a distribution shift in the
dataset, as the model was trained on Brazilian data but evalu-
ated on a U.S. test set, which could be due to the lower preva-
lence of pacemakers in Brazil [17]. This underlines the need
for model robustness to population-specific characteristics.

In fn pacemaker ECGs i), the absolute relevance in the P
wave segments of lead V1 decreased proportionally the least
compared to tp cases, while the negative relevance increased,
suggesting that these segments were particularly important for
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the model’s negative classification. From a physiological per-
spective, pacemaker can suppress or modulate atrial activity,
which leads to different characteristics in the ECG. While AF
without a pacemaker is typically characterised by absent P
waves, pacemaker ECGs may exhibit different features sug-
gestive of AF, such as prolonged P-wave duration (e.g., >130
ms in right atrial appendage pacing) [18]. This results in less
diagnostically useful information for the model, which may
have contributed to the observed higher number of fn in pace-
maker ECGs.

On the other hand, the high relevance of V1 in both groups
suggests that this lead is sensitive to atrial activity. This finding
is consistent with V1 being widely used for the detection of
atrial disorders [19].

This work has some limitations. Although a pacemaker
diagnosis code may be present, it does not guarantee that ac-
tive pacing was present during the ECG recording. Similarly,
even though we focussed on patients with diagnosis of chronic
AF, rhythm changes in the recorded ECGs cannot be com-
pletely excluded. However, these aspects reflect the challenges
of working with real clinical data and large retrospective co-
horts. These potentially confounding factors may have con-
tributed to the moderate metrics observed. Moreover, 84% of
AF cases in the MIMIC-1IV dataset were labeled as unspeci-
fied and were not included, highlighting the potential need for
larger datasets with more granular diagnostic labels.

5 Conclusions

Overall, our findings highlight the importance of training and
evaluating DNNs in healthcare with a focus on fairness. To
promote broad applicability and robustness, the diversity of
patient groups must be considered.
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