
Tom Hetto* and Markus Reischl

Automatic Labeling of Multi-Modal Sensor
Training Data for Hand Gesture Analysis
https://doi.org/10.1515/cdbme-2025-0180

Abstract: Hand gesture recognition is an important task in
human-machine interaction, enabling intuitive and accessible
control methods across various applications, including assis-
tive technologies, virtual reality or sign language translation.
The gesture recognition task relies on sensory input from dif-
ferent modalities and in order to be processed, the data needs
to be labeled with the corresponding hand gesture classes.
This is often done manually which remains a major bottle-
neck in developing robust gesture recognition systems. This
paper presents an Auto-Labeling Pipeline designed to auto-
mate the annotation process for multi-modal sensor data, re-
ducing the time and effort required for labeling input data. The
proposed system uses data from the Ultraleap Leap Motion
Controller, and classifies predefined gesture models based on
inter-joint angles and the cosine similarity between their pose
vectors. The pipeline proposes a post-processing step to filter
misclassifications and enhance gesture recognition reliability.
The developed open-source toolbox enables researchers to col-
lect and label gesture datasets efficiently, making hand gesture
recognition more accessible and scalable.

Keywords: hand gesture recognition, automatic labeling,
multi-modal sensor data, machine learning, human-computer
interaction, gesture classification

1 Introduction

Hand gesture recognition is a natural form of human inter-
action and can be used in various ways if detected reliably.
Human-Machine Interfaces (HMI) can rely on hand gestures,
as they increase acceptance due to ease of use and accessibil-
ity [1] but are also used in many other domains such as sign
language translation [2–4]. Due to the wide range of appli-
cations for hand gesture recognition, a variety of sensors are
commonly used as input sources, such as electromyography
[5], electrocardiography, other biosignals, camera images, gy-

*Corresponding author: Tom Hetto, HMT Engineering SARL,
L-6143 Junglinster, Luxembourg & Institute for Automation and
Applied Informatics, Karlsruhe Institute of Technology (KIT),
D-76344 Karlsruhe, Germany, e-mail: tomhetto@gmail.com
Markus Reischl, Institute for Automation and Applied Informat-
ics, Karlsruhe Institute of Technology (KIT), D-76344 Karlsruhe,
Germany

roscope and accelerometer data or any other sensor. When per-
forming a hand gesture, each sensor produces a time series in-
put corresponding to this gesture. In order to process the col-
lected data, it has to be labeled with the according gesture, as
depicted in Figure 1. This labeling process consists of attribut-
ing the gesture performed at each time step to the set of input
data, which can be a combination of multiple sensors. In some
domains, researchers have started to generate synthetic data to
eliminate the labeling step, but this has not yet been done for
hand gestures [6, 7]. Thus, in order to get a high quality anno-
tated dataset, manual labeling is often still the solution, e.g.,
time series need to be mapped to each other as well as to a
performed gesture which serves as label in order to be usable
as training data. It can be done manually by either recording
a video of the test person performing the gesture and later-on
labeling the data by hand, or by displaying instructions given
to the user. The first solution is time-consuming while the lat-
ter is error prone if the user does not precisely times his ges-
tures. Additionally, traditional data collection often introduces
a predefined gesture sequence, in order to reduce the label-
ing efforts, which can introduce an unintended gesture depen-
dency in the dataset. If in a predefined sequence, one gesture
always follows another, motion artifacts can transition into the
following gesture, and thus pollute the training data.

Fig. 1: Exemplary labeling process of a time-series of unspecified
data

The goal of this article is to develop a solution to this la-
beling problem and make hand gesture recognition research
more accessible to researchers who do not have the time to
manually label their data. We present a data collection tool-
box with an integrated Auto-Labeling Pipeline, which is made
open-source and publicly available. First, it makes it easier to
test and innovate on new multi-modal sensory input solutions
by combining multiple sensor sources. Secondly, it facilitates

DE GRUYTER Current Directions in Biomedical Engineering 2025;11(1): 314-317

314
 Open Access. © 2025 The Author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

Tom Hetto, Markus Reischl, Automatic Labeling of Hand Gesture Sensor Data

Wearing Watch
and performing
Hand Gesture

Recoding IMU
and

PPG Data

Tracking Hands
with

Leap Motion

Detecting hand gestures
in Leap Motion Data
and label IMU & PPG

Data accordingly

Fig. 2: Exemplary Auto-labeling pipeline used for labeling IMU and PPG training data.

further research on hand gesture detection by easing and au-
tomating the labeling process. Using the pipeline described
in Section 3, it is possible to collect a dataset of hand ges-
tures and the corresponding sensor data without tediously la-
beling the data manually. Third, it is easily extendable for other
hand gestures and any modality of input. And finally the pre-
sented pipeline will also reduce errors due to motion artifacts
pollution because no gesture sequence is predefined, and the
data collection can be different for each subject and repetition,
which is demonstrated in Section 4 where we will briefly eval-
uate the data collection process by training a neural network
with two differently collected datasets.

2 Gestures and Classification

Hand gestures are defined by the position of each finger, and
more specifically the angle of each joint in each finger. Thus, in
order to classify gestures, calculating the angles of each joint
gives a mathematical description of a hand gesture. The di-
rection of the metacarpal and proximal phalanx as well as the
middle and distal phalanx of the fingers are taken into con-
sideration as they are providing the necessary positional infor-
mation to determine the selected grasps. To classify gestures
on the joint angles, an algorithm is proposed which computes
joint angles between its corresponding bones and the palm’s
orientation to derive meaningful features for gesture classifi-
cation. The angle between the direction vectors of the indi-
vidual bones is calculated for each finger and these computed
angles and pinch metrics are used to classify the hand pose into
one of several predefined categories. Table 1 presents an exem-
plary list of gestures and their corresponding joint angles. To
classify a newly performed gesture based on the prerecorded
ones, a 14-dimensional feature vector is calculated based on
the angles between the joints:

Gt =
(︁
𝑡𝑚𝑐−𝑝𝑝 𝑡𝑝𝑝−𝑑𝑝

)︁
(1a)

Gi =
(︁
𝑖𝑚𝑐−𝑝𝑝 𝑖𝑝𝑝−𝑚𝑝 𝑖𝑚𝑑−𝑑𝑝

)︁
(1b)

Gm =
(︁
𝑚𝑚𝑐−𝑝𝑝 𝑚𝑝𝑝−𝑚𝑝 𝑚𝑚𝑑−𝑑𝑝

)︁
(1c)

Gr =
(︁
𝑟𝑚𝑐−𝑝𝑝 𝑟𝑝𝑝−𝑚𝑝 𝑟𝑚𝑑−𝑑𝑝

)︁
(1d)

Gp =
(︁
𝑝𝑚𝑐−𝑝𝑝 𝑝𝑝𝑝−𝑚𝑝 𝑝𝑚𝑑−𝑑𝑝

)︁
(1e)

Ggesture =
(︁
Gt Gi Gm Gr Gp

)︁
(1f)

Each finger has a joint angle vector, which contains the angles
between the bones of the finger as described in Table 1. These
vectors are then combined to a gesture vector Ggesture which
is a 14-dimensional vector describing a specific gesture. The
cosine similarity 𝑠 of this vector is calculated towards the pre-
defined gestures [8], and the most similar gesture is selected:

𝑠 = cos(𝜃) =
GgestureA ·GgestureB

‖GgestureA‖‖GgestureB‖ (2)

Cosine similarity is often used in multi-dimensional vector
spaces as it allows a fast calculation of a similarity measure-
ment in complex search spaces [9, 10]. It is a value between 0
and 1 and in addition to selecting the most similar gesture, it
also allows to discard gestures that are not part of the gesture
set by setting a minimum similarity threshold. This similarity
measurement is used in the following part to classify gestures.

3 Auto-Labeling Pipeline

The process of capturing input data from a multi-modal sen-
sor source and automatically assigning the correct class to the
time series is defined as Auto-Labeling Pipeline and visualized
exemplarily in Figure 2. The auto-detection pipeline is consti-
tuted of a multi-step algorithm. It makes use of the angular re-
lationships between the bones of the hand and the orientation
of the palm to classify hand poses into predefined categories.
This approach is designed to work with data provided by Ul-
traleap’s Leap Motion Controller v1 (or v2) using two infrared
cameras to track multiple hands [11]. The Leap Motion sen-
sor provides detailed skeletal data for each hand, including the
positions of joints and the orientation of the palm through its
Gemini LeapC SDK written in C. For this, the Python Bind-
ings are used in order to integrate the hand tracking data into
our auto-labeling pipeline [12]. Additionally, Leap Motion di-
rectly provides a pinch strength value from 0 to 1, which indi-

315

Tom Hetto, Markus Reischl, Automatic Labeling of Hand Gesture Sensor Data

T
MC-
PP

T
PP-
DP

I
MC-
PP

I PP-
MP

I MP-
DP

M
MC-
PP

M
PP-
MP

M
MP-
DP

R
MC-
PP

R
PP-
MP

R
MP-
DP

P
MC-
PP

P
PP-
MP

P
MP-
DP

Fist 30° 30° 70° 85° 35° 80° 80° 40° 80° 85° 40° 80° 85° 40
Pinch 20° 20° 50° 55° 30° 25° 30° 20° 20° 20° 15° 10° 15° 10°
I. Tap 5° 5° 65° 65° 30° 15° 10° 5° 5° 5° 5° 20° 0° 5°
Rest 5° 5° 5° 10° 10° 10° 20° 15° 10° 20° 15° 15° 20° 15°

Tab. 1: Exemplary Inter-Joint Angle Gesture Mapping Table for each Finger Thumb(T), Index(I), Middle (M), Ring (R), Pinkie (P), with
Metacarpal (MC), Proximal Phalanx (PP), Middle Phalanx (MP), Distal Phalanx (DP)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 3: Pre-implemented Gesture Set of 10 Gestures: Resting
(a), Flat (b), Fist (c), Pinch (d), Pinkie Pinch (e), Index Tap (f), All
Finger Tap (g), Wrist Flick Up (h), Wrist Flick Down (i), Writs Flick
Out (j)

cates how strong the index and thumb are pinching, or if they
are not pinching at all.

3.1 AutoGesture Toolbox

In addition to the sensory input chosen by the applying re-
searcher, the pipeline makes use of infrared camera feeds pro-
vided by an Ultraleap Leap Motion Controller v1. Using two
infrared cameras to track hands, the controller detects and cal-
culates the position of the bones of each finger. For each ges-
ture which needs to be detected a shape of angle ranges per
joint as shown in Table 1 is defined. The pipeline receives the
joint angles for each finger, compares these to the predefined
shapes by calculating the cosine similarity according to Equa-
tion 2 and classifies the gesture accordingly. The detected ges-
ture is then assigned as label for the collected raw sensor input.
If no gesture is recognized, the data gets assigned a "No ges-
ture" label in order to have training data for this case as well.
To implement this pipeline for data labeling, a toolbox called
AutoGesture is put at disposal [13] and consists of a collection
of Python scripts. By using AutoGesture, researchers define
their incoming data streams (e.g. IMU data) and they provide
a defined list of hand gestures and their corresponding fin-
ger positions. The toolbox comes with 10 predefined gestures
shown in Figure 3, but can easily be adjusted or extended by
any other needed gesture with the provided Gesture Recording
Tool. With this information, a pipeline is put in place which al-
lows the researcher to start collecting data, which is then auto-
matically labeled. The toolbox allows to record the hands joint

t0 t1 t2 t3 t4 t5 t6 t7

Rest Rest Undef. Undef. Undef. Pinch Pinch

Rest Rest Pinch Pinch Pinch Pinch Pinch

Back-labeling

Fig. 4: Pre-Gesture Back-Labeling Post-Processing

angle data inside Python and further process either the raw
data or the classified gesture labels. Additionally, the frames
of the raw hand tracking data are saved to be able to verify the
classifications.

3.1.1 Post-Processing

Due to the high framerate of the Leap Motion Device (up to
200 frames per second) it can happen that our pipeline falsely
detects intermediate positions as gestures while the fingers are
still moving in order to reach their final position and classi-
fication is performed at each frame. To filter these misclas-
sifications, a post-processing procedure has been developed
to achieve robust and responsive classifications. In a sliding
window of a length of 100ms with a step-size of one frame,
a majority voting is performed to determine the most prob-
able gesture inside the selected window. This filters most of
the unwanted misdetections due to intermediate positions. The
pipeline only detects gestures once the fingers are in their fi-
nal predefined position. For some applications or sensory in-
puts, the transition motion itself can greatly influence the sen-
sor data and contain the most important information. To ac-
count for this, the post-processing pipeline implements a pre-
window smoothing which is of variable length. Once a transi-
tion from "Resting" is starting, an undefined state is detected.
As soon as a gesture has been recognized, the previous frames
with undefined state are back-labeled with the respective ges-
ture. Thus, the whole motion from "Resting" to the finished
position gets labeled accordingly. This process is visualized in

316

Tom Hetto, Markus Reischl, Automatic Labeling of Hand Gesture Sensor Data

(a) Auto-Labeling to Manual
Labeling without Post-Processing

(b) Auto-Labeling to Manual
Labeling with Post-Processing

Fig. 5: Hands detected by Leap Motion Controller and the corre-
sponding Bone Representation

Figure 4 and can be disabled in the toolbox if not needed for
the specific use case.

4 Results and Conclusion

The pipeline described in this study provides an efficient and
scalable method for collecting a large dataset of hand ges-
tures and corresponding sensory data without tediously la-
beling the data manually, which is often time-consuming and
error-prone. The toolbox is easily extendable for other hand
gestures and sensory input which ensures that the system can
be adapted to various research needs and applied to a range
of applications. In order to demonstrate the effectiveness of
the pipeline, we recorded and auto-labeled a series of gestures
and manually labeled the same dataset. By comparing the raw
labeling of the pipeline to the manual labels, an accuracy of
89 % is achieved. The confusion matrix is displayed in Figure
5a. It shows that many misclassifications happen in the Rest-
ing class, which demonstrates the problem described in Sec-
tion 3.1.1. By applying the there described post-processing,
the accuracy increases to 95% and eliminates most of these
misclassifications as shown in Figure 5b. These accuracy val-
ues are measured towards manual labeling, which in itself is
not error-free. It can be assumed that the ground-truth is some-
where in between the manual labels and the automatic ones.
Thus we can conclude that the Auto-Labeling Pipeline sim-
plifies and accelerates the process of collecting large datasets
of hand gestures and corresponding sensor data. Overall, this
work contributes to the advancement of hand gesture recog-
nition by making the data collection and labeling process fast
and less error-prone. The ease of extending the pipeline to dif-
ferent gestures and sensory modalities opens new possibilities
for future research, enabling further advancements in multi-
modal sensory input solutions for human-computer interac-
tion, virtual reality, assistive technologies, and other research
fields.

In future work, one can analyze the ability of removing
the gesture dependency of predefined gesture sequences as de-
tailed in Section 1 with the here presented pipeline.

References

[1] S. Adelé and E. Brangier, “Evolutions in the human technol-
ogy relationship: rejection, acceptance and technosymbiosis,”
IADIS International Journal on www/Internet, vol. 11, pp. 46–
60, Jan. 2013.

[2] T. Zhao, J. Liu, Y. Wang, H. Liu, and Y. Chen, “Towards Low-
Cost Sign Language Gesture Recognition Leveraging Wear-
ables,” IEEE Transactions on Mobile Computing, vol. 20,
pp. 1685–1701, Apr. 2021. Conference Name: IEEE Trans-
actions on Mobile Computing.

[3] J. Hou, X.-Y. Li, P. Zhu, Z. Wang, Y. Wang, J. Qian, and
P. Yang, “SignSpeaker: A Real-time, High-Precision
SmartWatch-based Sign Language Translator,” in The 25th
Annual International Conference on Mobile Computing and
Networking, MobiCom ’19, (New York, NY, USA), pp. 1–15,
Association for Computing Machinery, Aug. 2019.

[4] S. Jiang, P. Kang, X. Song, B. Lo, and P. Shull, “Emerg-
ing Wearable Interfaces and Algorithms for Hand Gesture
Recognition: A Survey,” IEEE Reviews in Biomedical Engi-
neering, vol. 15, pp. 85–102, 2022.

[5] O. Schill, R. Wiegand, B. Schmitz, R. Matthies, U. Eck,
C. Pylatiuk, M. Reischl, S. Schulz, and R. Rupp, “Ortho-
Jacket: an active FES-hybrid orthosis for the paralysed up-
per extremity,” vol. 56, pp. 35–44, Feb. 2011. Publisher: De
Gruyter Section: Biomedical Engineering / Biomedizinische
Technik.

[6] R. Bruch, F. Keller, M. Böhland, M. Vitacolonna, L. Klinger,
R. Rudolf, and M. Reischl, “Synthesis of large scale 3D mi-
croscopic images of 3D cell cultures for training and bench-
marking,” PLOS ONE, vol. 18, p. e0283828, Mar. 2023. Pub-
lisher: Public Library of Science.

[7] A. Orth, H. Höfer, A. Nefedov, M. Jalali, C. Wöll, and M. Reis-
chl, “ML-Based XPS Quantification Supported by Synthetic
Dataset Generation,” Current Directions in Biomedical En-
gineering, vol. 10, pp. 482–485, Dec. 2024. Publisher: De
Gruyter.

[8] “Clustering based on Cosine,” INTERNATIONAL JOURNAL
OF ENGINEERING SCIENCE, vol. 2, no. 3, 2012.

[9] A. R. Lahitani, A. E. Permanasari, and N. A. Setiawan, “Co-
sine similarity to determine similarity measure: Study case
in online essay assessment,” in 2016 4th International Con-
ference on Cyber and IT Service Management, pp. 1–6, Apr.
2016.

[10] G. Sidorov, A. Gelbukh, H. Gómez-Adorno, and D. Pinto,
“Soft Similarity and Soft Cosine Measure: Similarity of Fea-
tures in Vector Space Model,” Computación y Sistemas,
vol. 18, pp. 491–504, Sept. 2014. Publisher: Instituto Politéc-
nico Nacional, Centro de Investigación en Computación.

[11] U. Limited, “Leap Motion Controller,” Mar. 2025.
[12] U. Limited, “Gemini LeapC Python Bindings.”
[13] T. Hetto, “AutoGesture: A data collection toolbox with an

integrated Auto-Labeling Pipeline.”

317

