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Abstract: Cardiovascular diseases (CVDs) remain the lead-
ing cause of mortality worldwide. New sensor-based ap-
proaches to assess cardiovascular risk may support individual-
ized healthcare. Recent advancements in Artificial Intelligence
(AI) suggest Electrocardiogram (ECG) - based predictions of
age and sex as potential biomarkers for cardiovascular risk
stratification. Discrepancies between predicted and chronolog-
ical age, as well as inconsistencies in sex classification, have
been linked to increased cardiovascular risk. However, these
data-driven approaches also contain the risk of not equally per-
forming across subgroups. In this work, we introduce a deep
learning model that predicts both ECG-derived age and sex si-
multaneously. Trained on the CODE dataset and validated on
PTB-XL, the model achieves a mean absolute error of 8.85
years in age prediction and an Area under ROC of 0.93 for sex
classification. Notably, sex prediction accuracy decreases with
age, suggesting morphological changes in ECG signals. To en-
hance interpretability, we use posthoc explainable Al analysis
to highlight ECG regions relevant for sex classification, reveal-
ing known sex-specific features. Our findings underline the po-
tential of Al-driven ECG analysis as a promising, explainable
tool for cardiovascular risk assessment.

Keywords: ECG, Al, Sex-specific medicine, Cardiovascular
risk

1 Introduction

Cardiovascular diseases (CVDs) remain the leading cause of
mortality worldwide, necessitating early and accurate risk
assessment strategies. Traditional cardiovascular risk scores
incorporate well-established factors such as blood pressure,
cholesterol levels, smoking status, and family history. How-
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ever, emerging evidence suggests that applying Artificial Intel-
ligence (AI) models directly to a raw electrocardiogram (ECG)
may serve as novel physiology-based biomarkers for cardio-
vascular risk stratification.

Recent advances in deep learning have enabled the esti-
mation of ECG-derived age and sex prediction, both of which
have been shown to reflect underlying cardiovascular health.
Discrepancies between predicted and chronological age larger
than the models mean average error (MAE) of about 8 years
could be related to different outcomes, such as mortality or
the development of congestive heart failure. Underestimation
and overestimation of the age were associated with better and
worse clinical outcomes, respectively [1, 2]. The definition of
a sex discordance score, a continuous variable ranging from 0
(predicted male sex) to 1 (predicted female sex) allowed for
the investigation of sex related cardiovascular risk. A lower
discordance could be shown in persons of age over 40 years,
and in particular ECGs showing tachycardia (high heart rate)
or broad QRS complexes. Interestingly, sex discordance in
women with a normal ECG in an outpatient setting was associ-
ated with higher cardiovascular risk, but not in male [3]. These
findings suggest that discordance analysis of ECG-based sex
and age predictions may serve as an individualized risk assess-
ment related to deviations from expected cardiac physiology.

At the same time, Al-based approaches in general poten-
tially suffer from a lack of trustworthiness including explain-
ability [4]. Due to the high dimensionality of ECG data, train-
ing biases such as device-specific artefacts in a certain group
of interest may be present, even if the training set appears to
be balanced regarding sensitive variables, such as age, sex,
race/ethnicity, or disability status [5].

In this work, we propose an extension of a state-of-the-art
Al model developed for age prediction, which now enables to
simultaneously predict age and sex from standard diagnostic
ECG. Furthermore, we analyze the models explainability, by
using different methods including explainable Al analysis.

2 Material and Methods

2.1 Data

Two different datasets are used for training and validation.
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Training dataset — CODE The Brazilian Clinical Outcomes
in Digital Electrocardiography (CODE) dataset was utilized
[6, 7], containing clinical 12-lead ECGs of 10 second length
with annotations for various abnormalities. The dataset was
collected from 1,676, 384 patients older than 16 years in the
Telehealth Network of Minas Gerais, Brazil between 2010 and
2016. The patients in the dataset had a mean age of 51.2 years
and 60.3% were female.

Validation dataset — PTB-XL For testing and further analysis
of the model the PTB-XL dataset was used [8, 9]. It consists
of 21,799 clinical 12-lead ECGs of 10 second length from
18,869 patients, collected between 1989 and 1996 with de-
vices of the Schiller AG. We exclude all patients that are < 20
and > 85 years of age, resulting in 20, 370 ECGs (mean age:
59.64 years, median age: 61 years, 46.64% female).

2.2 Al Model, Validation, and XAl
analysis

We modified the 1DResNet architecture developed for age pre-
diction [1] to simultaneously perform a sex and an age predic-
tion. To achieve this, before the last fully connected layer of
the model, it was split into two “heads”. The age prediction
head employed a fully connected linear layer and outputs a
scalar value, as it was implemented in the original model. For
the sex prediction head, a further multi layer perceptron was
included. It contains a hidden layer of 128 nodes, followed
by a ReLu activation function. Finally, a single scalar value
was outputted and interpreted as a probability distribution with
a sigmoid layer. Figure 1 gives a visualization of these two
heads. To consider the different scales of age and sex, the loss
function was altered to include a relative error of the age, as
well as the binary cross entropy (BCE) for the sex, i.e.

Loss = lossage + 10sSsex,

where

2
agCyye — agepred
IOSSage = —_——
agepred

losssex = BCE(seXtrue, S€Xpred)

= —mean ([sexgue -log(seXpred)
N-1
+ (1 — seX{pe) - log(1 n=0 )

and sex(rye and sexp.q are the true value and prediction of the

— $€Xpred)

n-th sample, respectively. The used implantation of PyTorch
BCELoss function clamps its log function outputs to be greater
than or equal to —100, to ensure the output to be finite, even
though log(0) =

The sex prediction is given as a value between 0 and 1,

—0OQ.

with 0 indicating the prediction of a male and 1 the prediction
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Fig. 1: Visualization of the two “heads” of the model. It connects
to the last fully connected layer of the ResNet Model. The upper
part outputs the age prediction, the lower part outputs the sex
prediction.

of a female. The sex prediction will be treated as a continuous
variable.

The patients are separated into three age groups: below 40,
between 40 — 60 years, and above 60 years. These boundaries
are chosen as they represent changes in the human hormone
levels, as happening in menopause [10].

The XAI method integrated gradients (IG) [11] validated
in its use for ECGs [12] was used to determine which parts of
the ECG where most relevant for the sex prediction. For this,
“relevances” are computed for each input sample of each pro-
cessed ECG. To visualize these relevances, an existing pipeline
[2] was used: The freely available QRS detector xQRS [13]
was used to identify R-peaks and fixed-length segments of the
relevances of 650 ms around the R-Peak where stored. These
relevances where normalized and averaged across all 20, 370
ECGs.

3 Results

Analyzing the ROC curve in Figure 2 demonstrates that a
threshold of 0.357 maximizes the F1-Score for the sex pre-
diction and achieves a value of 0.84. The Area under the ROC
curve is 0.93.

Figure 3 shows the age predictions on the PTB-XL
dataset. The model shows a mean absolute error (MAE) of
8.85 years and Pearsons r-value of 0.79. Age predictions range
from 20 to 100 years, with visible underestimations and over-
estimations in all chronological ages. The distributions of both
the chronological and the predicted age show a maximum
around 65 years. Figure 4 shows the histogram of the sex pre-
diction with red color indicating a male biological sex and
turquoise indicating female biological sex. A clear difference
between both histograms can be observed.
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ROC Curve: ECG-Based Sex Prediction
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Fig. 2: ROC curve: Classification on ECGs from females (red
curve) and males (turquoise curve) with three different thresholds
(gray dots)

We observe, that the uncertainty of the sex prediction, i.e.
a prediction diverging from O for male and 1 for female pa-
tients, increases with chronological age.

Figure 5 shows the distribution of the continuous sex pre-
diction value for the three different age groups. A highly sig-
nificant increase in the mean error between these age groups
can be observed: all distributions obtain a p-value by a two
sided t-test of p < 0.001.

In Figure 6 the averaged relevances of lead V1 are shown.
As can be seen, there is an area of high positive relevances at
the end of the QRS complex (= 350ms).

4 Discussion

Although the model can not only predict the age but also the
sex from an ECG, we observe a similar performance as previ-
ously trained models predicting age only [6]. Furthermore, we
achieve similar performance to previous models only predicted
sex (our AUC 0.93 vs a AUC of 0.94 in [3]). Results clearly
show, that the sex prediction is significantly better, when pa-
tients are younger. This supports the strong role that sex hor-
mones have on the ECG morphology, that become visible
during puberty and progressively subside with advancing age
[14]. For females, the main sex hormone is estrogen, where a
strong decrease is experienced during menopause, happening
at a mean age of around 50 years [10]. This may be an expla-
nation in the great difference of prediction quality of the under
40 year and over 60 age groups.

The XAl analysis further support these findings. While in
previous work, age prediction only has been analyzed [15], our
new findings suggests that the model learned known features

Predicted ECG Age
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Fig. 3: Age prediction: The ECG-Age predictions for all sub-
jects in the PTB-XL dataset given as a function of the subject’s
chronological age. The histograms show the distribution of the
chronological age on the top and of the predicted ECG-Age at the
right side, respectively.
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Fig. 4: Sex prediction: Logarithmic histogram of the sex predic-
tions for all subjects of PTB-XL. Male sex is assigned to the value
0, and female sex to the value 1, the predictions reflect the proba-
bility of female sex.
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Fig. 5: Sex prediction: Prediction error of the sex prediction di-
vided by three age groups. The boxes show the 50% percentile,
the lower whiskers shows the Q1 —1.5xIQR and the upper whisker
shows Q3 + 1.5 * IQR, where IQR is the inter quartile range. The
line in the box indicates the median.
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Fig. 6: XAl for sex prediction: |G relevances normalized over all
subjects for lead V1.

in differences between male and female ECGs. As shown in
Figure 6, the model has a focus on the ST-elevation, i.e. high
relevances right after the end of the QRS complex and before
the beginning of the T-wave, an ECG feature which is reported
in around 90% of male ECG but only 20% of female ECG [14].
In general, woman have narrower QRS complexes than men.
The relevances indicate this in the great negative relevance at
the S-wave of the ECG.

5 Conclusion

ECG-based AI models are currently intensively researched
as potential risk assessment tools. By including sex into the
model predictions, we aim to enhance their explainability to-
wards this sensitive variable, while simultaneously pointing
out potential differences in male and female ECGs.

Code Availability
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Author Statement
This project was partly funded by the German Federal
Ministry of Education and Research (ACRIBiS grant n.
01ZZ2317B) as well as by the Lower Saxony “Vorab” of the
Volkswagen Foundation and the Ministry for Science and Cul-
ture of Lower Saxony, Germany under Grant 76211-12-1/21.
Authors state no conflict of interest.

References

E. M. Lima, A. H. Ribeiro, G. M. Paixdo, M. H. Ribeiro, M. M.
Pinto-Filho et al., “Deep neural network-estimated electrocar-
diographic age as a mortality predictor,” Nature Communica-
tions, vol. 12, no. 1, p. 5117, 2021.

(1]

313

[2]

(3]

[4]

[5]

(6]

[7]

(8]

9]

[10]

1]

(2]

[13]

[14]

[19]

P. Hempel, A. H. Ribeiro, M. Vollmer, D. Krefting, N. Spicher
et al., “Explainable ai associates ecg aging effects with in-
creased cardiovascular risk in a longitudinal population
study,” npj Digital Medicine, vol. 8, no. 1, p. 25, 2025.

A. Sau, E. Sieliwonczyk, K. Patlatzoglou, L. Pastika, K. A.
McGurk et al., “Artificial intelligence-enhanced electrocardio-
graphy for the identification of a sex-related cardiovascular
risk continuum: A retrospective cohort study,” The Lancet
Digital Health, vol. 7, no. 3, Mar 2025.

B. Li, P. Qi, B. Liu, S. Di, J. Liu et al., “Trustworthy Al: From
principles to practices,” vol. 55, no. 9, pp. 177:1-177:46.
[Online]. Available: https://dl.acm.org/doi/10.1145/3555803
M. Liu, Y. Ning, S. Teixayavong, M. Mertens, J. Xu et al.,
“A translational perspective towards clinical Al fairness,”
npj Digital Medicine, vol. 6, no. 1, p. 172, Sep. 2023.
[Online]. Available: https://www.nature.com/articles/s41746-
023-00918-4

A. L. P. Ribeiro, G. M. Paixao, P. R. Gomes, M. H. Ribeiro,
A. H. Ribeiro et al., “Tele-electrocardiography and bigdata: the
code (clinical outcomes in digital electrocardiography) study,”
Journal of electrocardiology, vol. 57, pp. S75-S78, 2019.

A. H. Ribeiro, M. H. Ribeiro, G. M. Paixdo, D. M.
Oliveira, P. R. Gomes et al., “CODE dataset,” Dataset, 11
2021. [Online]. Available: https:/figshare.scilifelab.se/articles/
dataset/CODE_dataset/15169716

P. Wagner, N. Strodthoff, R.-D. Bousseljot, W. Samek,
and T. Schaeffter, “Ptb-xI, a large publicly available
electrocardiography dataset (version 1.0.3),” 2022. [Online].
Available: https://doi.org/10.13026/kfzx-aw45

P. Wagner, N. Strodthoff, R.-D. Bousseljot, D. Kreiseler,
F. I. Lunze etal, “Ptb-xl: A large publicly available
ecg dataset,” Scientific Data, 2020. [Online]. Available:
https://doi.org/10.1038/s41597-020-0495-6

E. Von der Lippe and F. Pritz, “Age at natural
menopause: Results from the german health interview
and examination survey,” European Journal of Public Health,
vol. 26, p. ckw172.078, 11 2016. [Online]. Available:
https://doi.org/10.1093/eurpub/ckw172.078

M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution
for deep networks,” CoRR, vol. abs/1703.01365, 2017.
[Online]. Available: http:/arxiv.org/abs/1703.01365

T. Bender, J. M. Beinecke, D. Krefting, C. Mdller, H. Dathe
et al., “Analysis of a deep learning model for 12-lead ecg
classification reveals learned features similar to diagnostic
criteria,” IEEE Journal of Biomedical and Health Informatics,
vol. 28, no. 4, p. 1848—-1859, Apr 2024.

G. Moody, T. Pollard, and B. Moody, “Wfdb software package
(version 10.7.0),” PhysioNet, 2022, https://doi.org/10.13026/
gjivw-1m31.

V. Carbone, F. Guarnaccia, G. Carbone, G. B. Zito, U. Oliviero
et al., “Gender differences in the 12-lead electrocardiogram:
clinical implications and prospects,” The ltalian Journal of
Gender-Specific Medicine, vol. 6, no. 3, pp. 126—141, 9 2020.
[Online]. Available: http://dx.doi.org/10.1723/3432.34217

P. Hempel, T. Bender, K. Gandhi, and N. Spicher, “Towards
explaining deep neural network-based heart age estimation,”
in 2023 IEEE EMBS Special Topic Conference on Data Sci-
ence and Engineering in Healthcare, Medicine and Biology,
2023, pp. 41-42.


https://gitlab.gwdg.de/medinfpub/biosignal-processing-group/ai-ecg-age-and-sex-prediction
https://dl.acm.org/doi/10.1145/3555803
https://www.nature.com/articles/s41746-023-00918-4
https://www.nature.com/articles/s41746-023-00918-4
https://figshare.scilifelab.se/articles/dataset/CODE_dataset/15169716
https://figshare.scilifelab.se/articles/dataset/CODE_dataset/15169716
https://doi.org/10.13026/kfzx-aw45
https://doi.org/10.1038/s41597-020-0495-6
https://doi.org/10.1093/eurpub/ckw172.078
http://arxiv.org/abs/1703.01365
https://doi.org/10.13026/gjvw-1m31
https://doi.org/10.13026/gjvw-1m31
http://dx.doi.org/10.1723/3432.34217

