
Karol Strama*, Katharina Steeg, Dominik Rzepka, Artur Kos, Gabriele A. Krombach,
Katarzyna Heryan, and Michael H. Friebe

Image Segmentation for Automatic Needle
Puncture Annotation in Vibroacoustic Signals
https://doi.org/10.1515/cdbme-2025-0176

Abstract: Manual annotation of biomedical data is often
a prolonged and error-prone process, particularly in scenarios
involving dynamic physical interactions, such as needle inser-
tions into soft tissue. In this study, we present an automated
annotation framework using the Segment Anything Model
(SAM) to detect puncture events in vibroacoustic recordings
from needle insertions into preserved Manduca sexta speci-
mens. The annotation tool utilizes SAM to extract segmenta-
tion masks from video recordings of needle insertions and an-
alyzes vertical deformations of the resulting mask boundaries.
Two puncture moments, one at entry and one at exit, were
estimated by searching for minima in the bottom boundary
displacements, yielding more reliable results compared to the
top boundary. The tool detected the first and second punctures
in 85% and 90% out of 300 cases, respectively. Although the
tool provides promising accuracy, further refinement could be
done to achieve higher and more robust precision. Limitations
like background interference, reflections, and needle inclusion
can be mitigated by improving the setup or optimizing seg-
mentation models, including fine-tuning SAM.
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1 Motivation

Recent advancements in machine learning have sparked inter-
est in exploring its potential applications across various fields.
A crucial part of reliably utilizing machine learning techniques
is to prepare an vast and representative dataset and establish
a reliable ground truth. In many cases, manual data preparation
can be tedious and time-consuming. Several studies developed
automatic or semi-automatic annotation methods with varying
levels of human involvement across different data types, in-
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cluding video, images, text, and audio recordings [1–3]. For
example, Uijlings et al. employed a collaborative assistant for
semi-automated segmentation mask annotation in images, im-
proving annotation speed by approximately 80% compared to
manual annotation and 17% over other state-of-the-art meth-
ods [2]. A similar study developed an interactive annotation
framework to track objects in videos with segmentation masks
inside user-defined bounding boxes, but that required initial
user-annotation for every video [3]. Although the aforemen-
tioned tools gave promising results, their need to receive ex-
ternal input made them time-consuming, creating the demand
for approaches that require less manual intervention.

A comparable need occurred in the investigation of vi-
broacoustic signals recorded during needle insertions to an-
alyze soft tissue transitions. Vibroacoustic signals originate
from needle-tissue interactions and encode for important
puncture events, such as entering a cavity or tissue characteris-
tics [4, 5]. Analyzing these data requires a viable annotation to
correlate needle movement with signal events. Initially, punc-
tures were annotated manually by marking the video frames
close to needle entry or exit, based on visual cues in along-
side captured videos. However, when using an in vivo model,
deformations before needle penetration occurred, causing dis-
crepancies between visual annotations and the actual puncture
events (Fig. 1). This led to inaccurate manual annotations, as
the visible part of the needle did not correspond to the precise
moment of puncture.

To avoid ambiguous annotations, puncture events were
detected automatically using the Segment Anything Model
(SAM) from Meta, introduced in 2024 [6]. This paper presents
an automated tool that leverages SAM as a state-of-the-art im-
age segmentation method to capture dynamic changes during
needle insertions.

Fig. 1: Sample frame from the recordings (a) as well as the cor-
responding ROI (b) and segmentation mask (in blue) created by
SAM (c).
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2 Experimental setup and
methods

An automatic annotation tool was designed to precisely iden-
tify the video frame corresponding to a needle puncture into
an object.

The particular object punctured was a preserved specimen
of Manduca sexta, the larval stage of the tobacco hornworm.
These insects, approximately 10 cm long and 2 cm in diame-
ter, are well-characterized model organisms in biomedical re-
search, providing an emerging platform for in vivo studies. A
freshly preserved larva was placed inside a gelatin block, with
a small section removed beforehand to accommodate the spec-
imen. A second gelatin block was placed on top to stabilize the
needle during insertion. Gelatin was chosen for its transparent
properties, allowing for parallel video recording of the punc-
tures as the needle advanced for later annotations.

All needle insertion experiments were captured by a
video camera mounted at a fixed angle parallel to the gelatin
layer (Fig. 1).

The specimens were found to exhibit vast deformations
at the needle entry and exit due to their elasticity, which moti-
vated the use of computer vision techniques to establish the au-
tomated annotation tool. A versatile Segment Anything Model
(SAM) [6] was used to automatically extract the shape of the
specimen for each frame of the videos. The model was chosen
for the fact that no additional fine-tuning is required to perform
well on unseen objects. Furthermore, Kirillov et al. report
that the model exhibits excellent zero-shot performance that
achieves results comparable to methods based on supervised
learning [6]. Due to the standardized video recordings, the
larva could always be located in a user-defined cropped frame,
accelerating the model’s computational inference. The corre-
sponding region of interest was thoroughly selected to include
the specimen in all available recordings. Subsequently, two
SAM methods of principal mask extraction were investigated:
(1) generating the mask using a fixed annotation point and (2)
generating the mask within a fixed annotation bounding box.
It was found that the bounding box method gave more robust
results, hence it was selected for all further analysis. An ex-
emplary maximum score segmentation mask along with the
image it was generated from is presented in Fig. 1.

To quantify the changes in the generated masks, only
their contours were analyzed. Given the horizontal orientation
of the specimens and the significant deformations occurring
along the vertical needle insertion path, the top and bottom
sections of the contours were selected for simplicity.

3 Processing of segmentation
masks

The vertical positions of the specimen’s top and bottom bound-
aries were analyzed over time in order to find the exact mo-
ments of the needle entry and exit (Fig. 2). Since the larva ex-
periences peak tensile deformation just before the rupture and
rapid tissue relaxation thereafter, it was expected that the low-
est vertical boundary locations would strongly correlate with
the puncture times. Thus, the purpose of the analysis was to
search for the minima over time of the obtained segmentation
contour coordinates. Investigation of the time evolutions of the
mask boundaries showed that values beyond the 150th pixel
exhibited erroneous behavior (Fig 2). Inspecting the segmen-
tation masks, we verified that the SAM predictions had consis-
tent errors in that area for all recordings. Hence, a subregion
was selected that discarded the pixels from the 150th onward
and below the 20th due to the inaccurate edge estimations.
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Fig. 2: Time evolution of the top and bottom boundaries as func-
tions of the frame number. Erroneous pixels beyond the 150th
were excluded, as no major deformations occurred in the isolated
area, but rather the larva moves holistically.

The resulting boundary deformation graphs were used to
determine puncture moments. Initially, the minimum bound-
ary value was considered for each frame, as it theoretically
tracked the needle tip’s contact point. However, this approach
proved unreliable due to erroneous SAM predictions, includ-
ing instances where the model incorporated the needle into the
mask, leading to the minimum value not increasing after the
puncture.

To address these issues, the mean boundary value was
chosen instead, as it significantly decreased the errors. Fol-
lowing this, a mean filter of length 10 pixels was applied to
smoothen the curve and exclude outliers, ensuring more robust
minima detection (Fig. 3).
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Fig. 3: Filtered mean vertical position movement over time for
the top and bottom boundaries. The first and second puncture
moments at frames 805 and 1315 have been highlighted with
green and orange lines, respectively. The bottom boundary slowly
decreased until the point of puncture, and then quickly increased
before stabilizing after each puncture. The slower rise after the
second puncture occurred due to the needle tip contained within
the mask which shifted the average down.

The top boundary results contained significant errors,
even after filtering. A longer mean filter could have been ap-
plied, but it would also shift other parts of the functions, lead-
ing to less accurate minimum. Similar behavior of the top
boundary deformations was found for other recordings. In con-
trast, the bottom boundary gave more promising results with
fewer dominant outliers.

The bottom boundary analysis yielded much more robust
estimations for both puncture times. Although the top bound-
ary produced a local minimum around the first puncture, it was
difficult to extract since it was not a global minimum (Fig.
3). Therefore, a consistent structure of the automated annota-
tion algorithm was selected. First, the global minimum of the
filtered mean vertical position of the bottom boundary is de-
termined and treated as the second puncture moment. The al-
gorithm then searches for the most prominent local minimum
prior to this moment and selects it as the first puncture time.

4 Results

The performance of the tool was tested on a dataset of 300
recordings, and the automated estimations were compared
with those obtained manually. The manual annotation process
required pausing the recordings during punctures and noting
the corresponding frame numbers. The automatically gathered
annotations experienced a systematic shift in time of roughly
20 to 30 frames relative to the reference manual annotations,
most certainly due to human reaction time. With the discarded
reaction time bias, the second puncture results for manual and
automated annotations differed by at most 20 frames 90% of
the time. In the remaining 10%, the estimates varied more sig-
nificantly, so these were treated as incorrect. Hence, automatic
annotations were considered valid if they deviated from the

manual reference annotations by no more than 40 frames. On
the other hand, the first puncture moment was correctly deter-
mined 85% of the time. Table 1 presents the algorithm accura-
cies if different maximum shifts were selected for the criterion.
For most of the recordings, the annotations were robustly de-
termined because of significant global minima. However, for
some measurements, the local minima were not as prominent
and therefore prone to errors. Lastly, it was observed that for
10% of the time, an erroneous noticeable local minimum was
present between the two correct ones, which would have led to
incorrect annotations if it had been slightly more significant.

Maximum Shift
40 30 20 10

First Puncture 85% 80% 60% 35%
Second Puncture 90% 75% 60% 45%

Tab. 1: Percentage accuracy of the algorithm for different maxi-
mum allowed shifts between the manually and automatically esti-
mated moments of puncture.

5 Discussion

An automated annotation tool using SAM was developed to
detect needle punctures by segmenting the specimen and ana-
lyzing vertical deformations of the segmentation masks. Punc-
ture moments were identified through analysis of segmenta-
tion mask changes in time, achieving 85 and 90% accuracy for
the first and second puncture, respectively. The second punc-
ture moment estimation was found to be more precise and ro-
bust than the first one. This result was expected since the algo-
rithm based its estimations on the bottom boundary displace-
ments. Furthermore, for many test cases, the tool performed
accurately even though it was difficult to determine the first
puncture moment manually.

The model inaccuracies were suspected to be mainly
caused by the image background as it consisted of many ob-
jects with similar colors as M. sexta. Objects with compa-
rable color and texture are often difficult to distinguish for
the segmentation model, especially on such small bounding
boxes with decreased resolution, which is a common issue [7].
Moreover, the room lighting gave rise to several reflections
inside the container which further decreased the model accu-
racy. Another study highlighted the problem of light reflec-
tions in transparent materials for image processing and com-
puter vision tasks [8]. This issue was further addressed in the
context of image segmentation and a novel reflection removal
technique that uses a single image for reflection suppression
was suggested [9]. Additionally, the problem with puncture
moment estimation using the top boundary might have been
caused by having a separation between gelatin layers in the
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vicinity of the M. sexta top boundary, and hence the difficulty
in discerning between the two. This is supported by the com-
plex background discussion [7].

The first and foremost solution to these problems would
be to improve the experimental setup. By providing a con-
tainer without similar background, well-designed room light-
ning, and more thoughtfully prepared gelatin layers, it would
have been easier for SAM to perform reliable segmentation.
Furthermore, utilizing cameras with higher resolution as well
as choosing optimized contrast filter in video post-processing,
would further enhance the tool’s precision. Flores et al. im-
proved segmentation in a biomedical setting by studying adap-
tive sigmoidal contrast enhancement [10]. Moreover, a more
appropriate metric than the mean and a more advanced fil-
ter could also be used to quantify the segmentation results.
Lastly, exploration of different segmentation models could be
performed. A recent study presented a model based on SAM
that enables more accurate image segmentation [11]. As noted
before, SAM was not robust in providing fine-grained details
which was especially seen beyond the 150th pixel in the es-
timated masks and during needle inclusion in the masks af-
ter puncture. The authors offer a modified approach called
dichotomous image segmentation which was specifically de-
signed to deal with high-accuracy segmentation tasks. Ma et
al. show another segmentation model based on SAM that was
implemented on a medical dataset [12]. An equivalent tech-
nique could be used for the M. sexta segmentation use case
where versatile SAM as the base model could be fine-tuned to
match with the specific data containing larva images.

6 Conclusion

Image segmentation is a powerful tool that may be used for
various tasks such as determining the instance of a well-
defined event. The present study showed that under certain
conditions SAM may give promising results in the case of
M. sexta puncture annotation, achieving the accuracy of 85%
and 90% for the first and second puncture annotation, respec-
tively. However, such precision is not satisfactory for the an-
notation tool to be fully functional. Analysis of mask bound-
aries showed that significant minima or abrupt changes in the
vertical location graphs do not always occur. Some potential
sources of errors and possible approaches to solve them have
been discussed. The most trivial solution would be to improve
the experimental setup by ensuring that the background does
not merge with the larva and that there are no striking image
reflections inside the container since the larva-background in-
terference significantly influenced the generated masks. Addi-
tionally, M. sexta could be entirely enclosed within gelatin for

complete visibility of the top boundary. More advanced tech-
niques could include changing the model from SAM to a one
particularly designed for fine-grained mask boundary estima-
tion, or fine-tuning SAM to a specific dataset containing vari-
ous larva images.
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