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Abstract: Two- or three- dimensional point clouds are com-
mon representations of data in the medical context, especially
in medical imaging and segmentation. When assigning real-
valued coordinates and transformations - e.g., for registration
with an additional imaging modality - metrics like the Dice
similarity coefficient, which rely on set operations on discrete
point sets, have to be approximated. We applied different cal-
culation methods for multiple metrics on a synthetic dataset
of basic shapes, combined with modifications like transforma-
tions or occlusions. The evaluation resulted in a wide range of
values for all metrics, depending on the modification, calcu-
lation method, and parametrization. This variability suggests
both a potential clinical risk and the opportunity for selectively
reporting more favourable results in publications. Therefore,
and considering the influence of point spacing and distribu-
tion, we recommend reporting multiple metrics from diverse
categories in the context of real-valued point clouds.

Keywords: Point cloud evaluation metrics, real-valued point
cloud comparison, 3D segmentation evaluation, multimodal
medical imaging.

1 Introduction

Medical imaging plays a critical role in diagnostics and treat-
ment planning. In complex cases, multimodal imaging is re-
quired either to acquire complementary information available
in different modalities or to overcome physical limitations -
for example in ultrasound (US)-guided interventions follow-
ing a computed tomography (CT) scan. Typically, information
transfer between different modalities is based on image reg-
istration. Due to different underlying coordinate systems, this
process introduces sub-voxel displacements, resulting in real-
valued coordinates for information like landmarks or segmen-
tations. Additionally, differences in imaging modalities can
lead to partial views of anatomical structures and variation in
point density and spacing due to modality resolution.
Evaluation metrics such as the Dice similarity coefficient
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(DSC) [1] are typically defined on a discrete voxel grid. These
metrics generally assume uniform sampling and equal cardi-
nality. Thus, custom strategies or approximations are neces-
sary when working with real-valued multimodal medical point
clouds. This introduces undesired variability in metric outputs,
which can affect medical risks, for example in case of radia-
tion therapy errors due to misaligned registrations.
Considering known metric-related pitfalls in image analysis
[2], this work aims to highlight the challenges of comparing
real-valued point clouds and to provide guidance on the selec-
tion and computation of suitable evaluation metrics.

2 Methods

The literature offers a wide range of metrics for point cloud
comparison [3]. In this work, we focus on the Hausdorff dis-
tance (HD) and its 95th percentile (HD95) as distance-based,
DSC as overlap-based, volumetric similarity (VS) as volume-
based and distance in center of mass (CoM) as localisation-
based metric and compute different calculation methods over
a synthetic dataset.

2.1 Hausdorff distance

The HD describes the maximum distance between one of the
points 𝑎 ∈ 𝐴 of one point cloud 𝐴 to the closest point 𝑏 ∈ 𝐵

of the other point cloud 𝐵 [4]:

HD(𝐴,𝐵) = max(ℎ(𝐴,𝐵), ℎ(𝐵,𝐴)) (1)

with ℎ(𝐴,𝐵) as the directed HD, or unidirectional HD:

ℎ(𝐴,𝐵) = max
𝑎∈𝐴

min
𝑏∈𝐵

||𝑎− 𝑏|| (2)

Consequently, it is highly susceptible to outliers which is why
the calculation of a specific quantile is recommended in ap-
plications like medical segmentations, where outliers are com-
mon and practically unavoidable. A common practice is the
HD95 which accounts for a 5 % outlier ratio [5].
A simple solution for dealing with one partial point cloud 𝐶

compared to one complete point cloud 𝐷 is to reduce the HD
to the unidirectional HD (ℎ(𝐶,𝐷)), eliminating the high dis-
tance of points without correspondence in the incomplete point
cloud but also not accounting for possible points from 𝐷 with
high distance but still belonging to the partial structure.
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2.2 Dice similarity coefficient

The DSC [6] is the most common metric for medical segmen-
tations [1] and falls into the category of overlay-based metrics:

DSC =
2|𝐴 ∩𝐵|
|𝐴|+ |𝐵| (3)

In the context of discrete points, the intersection only applies
to identical points, whereas this definition fails in the context
of real-valued point clouds. Therefore, a discrete version of the
DSC can be defined with the intersection being defined as:

(𝐴 ∩𝐵)𝑡 := {𝑎 ∈ 𝐴 | min
𝑏∈𝐵

||𝑎− 𝑏|| ≤ 𝑡} (4)

by defining an overlap radius 𝑡 within which points are
matched. On a unit-spaced grid, reasonable values for 𝑡 in-
clude 1 (adjacent voxels) or

√
3 (diagonal neighbours). This

approach does not compensate for unequal point counts. An-
other way of calculating the DSC is the volumetric formulation
with the volumes 𝑉𝐴 and 𝑉𝐵 :

DSC =
2 (𝑉𝐴 ∩ 𝑉𝐵)

𝑉𝐴 + 𝑉𝐵
(5)

In this work, volume approximation is performed with alpha
shape triangulation of the point clouds [7]. This introduces
the alpha radius 𝛼 as parameter. High values for 𝛼 will result
in filled non-convex shapes, while a small 𝛼 creates jagged
boundary regions and occlusions within the volume.

2.3 Volumetric similarity

The definition of VS varies in the literature. Based on [3], we
use the following definition:

VS = 1− ||𝐴| − |𝐵||
|𝐴|+ |𝐵| (6)

Since the definition is based on the number of points per point
cloud, VS can be calculated for real-valued data. Similar to
the DSC, volume reconstruction algorithms like triangulation
can be used for a volumetric calculation for uneven distribu-
tions. Alternatively, the volume reconstruction can be used to
resample both point clouds over a uniform grid.

2.4 Center of mass

The CoM can be calculated as the mean coordinate for point
clouds when assuming consistent density. In case of recon-
structions of the volumes, the analytic definition as balance
point can be applied for calculation or the point clouds can
be resampled over a uniform grid. The Euclidean distance be-
tween the CoM of ground truth and test data quantifies the
global displacement between both datasets.

2.5 Dataset

The evaluation of the different methods, metrics, and approx-
imation techniques requires a dataset that reflects a range of
geometric and structural characteristics. Therefore, we created
ten ground truth point clouds ranging from a basic cube to
more complex structures to incorporate multiple influencing
factors such as rotational or axial symmetry and extreme sur-
face area-to-volume ratios. They are shown in Fig. 1. The point
clouds are generated in within limits of 0 mm and 100 mm for
all axes in discrete steps of 2 mm in all directions. All com-
putations were carried out in MATLAB (version 9.13.0, The
MathWorks, Inc., Natick, MA, USA) [8].
Adding Gaussian noise and applying these modifications re-
sults in a total of 100 real-valued datasets for evaluation:
1. Just Gaussian noise with standard deviation of 1.5 mm
2. Translation of 2 mm in direction of 𝑥-axis
3. Translation of 20 mm in direction of 𝑥-axis
4. Translation of 10 mm in direction of 𝑧-axis
5. Rotation by 5 degree around center axis in 𝑧 direction
6. 2 mm 𝑥-axis translation + 5 degree rotation around 𝑧-axis
7. Randomized downsampling by 50 %
8. Directed uneven distribution of points (downsampling

proportional to 𝑥-axis from 20-100 %)
9. Occlusion of sphere (at (60,30,30)T, 𝑟 = 30)
10. Cropping points with 𝑦 > 70

The transformations are parametrized based on size and spac-
ing of the ground truths. In the context of multimodal medical
imaging, the differences in technology affect point spacing,
density and distribution. Thus, we included randomised down-
sampling and an uneven distribution. The occlusion represents
an image artefact and cropping simulates a partial view. Fig. 2
shows the cropped bucket-shaped point cloud alongside the re-
construction for two different alpha radii, generated via MAT-
LAB’s alphashape function [8]. Corresponding volumes were
determined with the volume function for alpha shape objects.

3 Results

Tab. 1 presents results for the DSC calculation. Discretiza-
tion was performed using two distance thresholds (2 mm and
3.5 mm), and alpha shape triangulation was applied with two
different alpha radii (𝛼 = 5 and 𝛼 = 10). Bi- and unidirec-
tional HD95, the difference in CoM and the VS are listed in
Tab. 2. CoM and VS were computed using three approaches:
directly from the original point cloud, from resampled point
clouds derived from the alpha shape reconstruction and from
the enclosed volume of the alpha shape reconstruction. An al-
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Fig. 1: Ground truth point clouds: a) cube b) sphere c) cylinder d) pentagrammic prism e) paraboloid with spherical occlusion f) hollow
cube g) hollow sphere h) bucket i) torus j) cooling unit. Red: point cloud, blue: occlusions and gaps for visualization purposes

Tab. 1: Dice scores from discretization and alpha shape triangulation for ten point clouds and their real-valued, modified versions.

Dice score: Discrete t = 2 mm Discrete t = 3.5 mm Alpha shapes 𝛼 = 5 Alpha shapes 𝛼 = 10
Test data Min Max Mean 𝜎 Min Max Mean 𝜎 Min Max Mean 𝜎 Min Max Mean 𝜎

Gauss. n. .81 .96 .91 .05 .99 1.0 1.0 .00 .52 .75 .69 .07 .68 .96 .85 .11
Transl. x1 .75 .95 .87 .08 .96 1.0 .99 .01 .44 .75 .66 .10 .67 .95 .84 .12
Transl. x2 .00 .78 .50 .27 .04 .84 .58 .27 .00 .61 .36 .22 .00 .78 .47 .27
Transl. z .28 .88 .71 .19 .53 .92 .83 .13 .11 .68 .52 .18 .24 .87 .67 .21
Rotation .74 .96 .87 .08 .93 1.0 .98 .02 .46 .75 .64 .11 .63 .96 .82 .13
Tr. + Rot. .53 .92 .77 .14 .82 .98 .91 .06 .22 .71 .56 .16 .49 .92 .74 .16
Downs. .54 .64 .61 .04 .66 .67 .66 .00 .13 .26 .23 .04 .76 .97 .89 .08
Uneven dst. .61 .72 .68 .04 .74 .75 .75 .00 .25 .41 .36 .05 .73 .97 .88 .09
Occlusion .77 .91 .84 .05 .86 .99 .92 .04 .46 .69 .61 .07 .65 .88 .78 .09
Cropping .65 .88 .76 .08 .77 .94 .83 .05 .39 .67 .55 .09 .56 .85 .73 .11

Fig. 2: Test data generation and reconstruction for the bucket
shape: a) ground truth (red) and test data (blue), b) alpha shape
reconstruction 𝛼 = 5, c) alpha shape reconstruction 𝛼 = 10

pha radius of 10 was selected, as it yielded DSC results more
consistent with those obtained through discrete evaluation.

4 Discussion

While some of the ground truth point clouds can be catego-
rized as academic examples, the inclusion of, for instance, the

shape inspired by a cooling unit emphasizes the influence of
the physical shape on specific metrics. By design, a transla-
tion of specifically the gap length leads to a perfect overlap of
all but the final cooling fins, resulting in a higher DSC than
smaller translations. This illustrates that a higher DSC does
not necessarily imply a closer match to the ground truth. Sim-
ilarly, rotations have negligible impact on all metrics when ap-
plied to nearly rotationally symmetric shapes. This is evident
from the maximum DSC values for rotated point clouds which
match those with added Gaussian noise. In medical applica-
tions, such as evaluating the helix-shaped contraction of a left
ventricle, this behaviour becomes critical: rotational compo-
nents may be under- or overestimated if the evaluation relies
solely on segmented point clouds. The difference in CoM be-
haves analogously under rotation, showing minimal displace-
ment when the rotation is centered around the CoM itself.
Discretization of the DSC highlights the importance of the
threshold. The greater threshold resulted in a mean increase of
0.09 in DSC, despite both thresholds being derived from the
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Tab. 2: 95th percentile Hausdorff Distance, bi- (HD95) and unidirectional (U-HD95), difference in center of mass based on points (CoM),
resampling (CoM-RS) or approximated balance point (CoM-𝛼), all in mm. Volumetric similarity based on points (VS), resampling (VS-
RS) and approximated volumes (VS-𝛼). Reconstruction was performed with alpha shape triangulation with 𝛼 = 10 mm.

Metric: HD95 U-HD95 CoM CoM-RS CoM-𝛼 VS VS-RS VS-𝛼
Test data Mean 𝜎 Mean 𝜎 Mean 𝜎 Mean 𝜎 Mean 𝜎 Mean 𝜎 Mean 𝜎 Mean 𝜎

Gauss. n. 1.8 0.1 1.8 0.4 0.0 0.0 0.4 0.3 0.4 0.4 1 0 .85 .10 .85 .10
Transl. x1 2.1 0.3 2.2 0.7 2.0 0.0 2.1 0.2 2.1 0.2 1 0 .85 .10 .85 .10
Transl. x2 15.7 2.1 16.8 2.2 20.0 0.0 20.1 0.2 20.1 0.2 1 0 .86 .09 .85 .10
Transl. z 6.3 1.5 7.2 1.6 10.0 0.0 10.1 0.4 10.2 0.5 1 0 .87 .10 .85 .10
Rotation 2.2 0.6 2.4 1.0 0.0 0.0 0.4 0.3 0.5 0.4 1 0 .85 .10 .85 .10
Tr. + Rot. 3.5 1.2 4.1 1.5 5.0 0.0 5.1 0.1 5.1 0.2 1 0 .86 .10 .85 .10
Downs. 2.3 0.1 1.8 0.4 0.2 0.1 0.4 0.2 0.5 0.4 .67 .00 .88 .09 .88 .09
Uneven dst. 2.3 0.2 1.8 0.4 9.0 4.5 1.4 1.0 1.4 1.0 .75 .00 .88 .09 .88 .09
Occlusion 5.4 3.7 1.8 0.4 5.0 2.8 5.2 2.9 5.3 2.9 .93 .04 .91 .11 .91 .11
Cropping 19.0 8.8 1.8 0.4 13.7 5.7 13.7 5.7 13.7 5.7 .84 .05 .92 .05 .92 .04

grid spacing. Reconstruction approaches compensate for non-
uniform distributions. Still, results depend on the quality of re-
construction. Tab. 1 shows that 𝛼 = 10 produces results closer
to the discrete calculation which may be an indicating factor
for a better fitting parameter. Additional volume caused by the
triangulation of the Gaussian noise at the surfaces resulted in
about 15 % deviation between reconstruction-based VS and
point-wise calculation. Nonetheless, the results are consistent,
even for non-uniform distributions.
In scenarios involving cropped volumes - such as physically
limited US scans registered to complete CT volumes - only
unidirectional metrics remain unaffected. While this approach
also addresses differences in point count and distribution, it in-
herently overlooks missing structures in the test data.
In the context of real-valued multimodal medical point clouds,
additional factors must be considered compared to conven-
tional metric selection [3]. While the choice of metric remains
influenced by sensitivity to translations, rotations, scaling, and
deformations, the imaging modality and its resolution intro-
duce further variability, such as differences in point spacing,
density, and distribution, as well as partial views or artefacts.
Volume reconstruction techniques perform most consistently
for the DSC, but the results should be validated through qual-
itative assessment of reconstruction quality and supplemented
with metrics from different categories.

5 Conclusion

The experimental evaluation yielded a wide range of val-
ues for all metrics across identical datasets. In the context
of real-valued multimodal medical data, factors like geome-
try, spacing, or point distribution must be taken into account.
Therefore, selecting appropriate evaluation metrics and jus-
tifying the computation method and parameter choices are

essential to mitigate risk and ensure unbiased reporting. Since
strong performance in a single metric does not necessarily
reflect closer alignment with the ground truth, we recommend
reporting multiple metrics from diverse categories.
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