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Abstract: This study investigates the contribution of speech
audio and speech verbal content in the automated detection
of depression levels. Recordings from the Distress Analysis
Interview Corpus Wizard-of-Oz dataset and the depression
severity labels of the recordings were used to extract acoustic
features. A transcription of the recordings was used to extract
textual features. The acoustic set included prosodic, cepstral,
and glottal feature categories. The textual features consisted of
semantic and syntactic categories. Mutual information feature
selection, followed by a random forest classifier identified the
set of features which optimised the depression level classifi-
cation. The optimised binary classification of depression from
non-depressed yielded an accuracy of 0.89 and an F1 score
of 0.87. A classification of the five depression levels yielded an
accuracy of 0.79 and an F1 score of 0.72. The ratio of impor-
tance scores of acoustic to textual of the speech acoustic fea-
tures was greater than 3:1. Our method thus provided acoustic
and textual indicators in depressed speech. These might in-
crease the acceptability of automated depression detection by
healthcare professionals. Our initial findings indicate a select
set of features that can improve the effectiveness of automated
depression detection and monitoring tools.
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1 Introduction

An estimated 5% of the world population is suffering from de-
pression, a large portion of those undiagnosed [1]. Speech is a
central tool in depression diagnosis and therapy and might be
employed in automated screening and monitoring technolo-
gies in everyday digital devices such as mobile phone and
computers [2]. To be both effective and acceptable by health-
care professionals, the tools should convey which speech
biomarkers of depression, in its different severity levels, are
assessed by these tools [3].

A vast number of studies examined automated speech-
based detection of depression and a classification of depres-
sion severity. A dataset commonly shared by these investi-
gations is the Distress Analysis Interview Corpus Wizard-
of-Oz (DAIC-WoZ). This dataset contains speech recordings
of 189 interviews conducted by a virtual psychologist con-
trolled by a human, and their text transcriptions [4]. Each
speaker has a verified depression severity as defined by the val-
idated patient health questionnaire (PHQ-8) rating scale [5].
Previous DAIC-WoZ studies employed speech processing to
examine acoustic features in speech of depressed individu-
als or natural language processing to examine verbal fea-
tures. Recent studies included both types of features for ex-
amination [1, 6-9]. The performance in depression classifica-
tion ranged between 75 % to 88 %. Discrimination between
depressed and non-depressed was detected with 94 % accu-
racy [10-13]. Most of these studies, however, employed deep
machine learning that lacked an explanation which features
and types are the best biomarkers of depression [2, 7, 14].
Moreover, to enable deep learning on the relatively small and
unbalanced cohort of DAIC-WoZ, the recorded speech was
segmented into subsegments of less than a second prior to aug-
mentation. These methods, although considered necessary and
commonly used in machine learning, might further obscure
longer temporal patterns of natural speech, on a word or sen-
tence level. A processing of natural time units in straightfor-
ward machine learning tools may provide both insights on the
manifestation of physiological, emotional and cognitive pro-
cesses in depressed speech. These insights then might be used
to better tune and enhance digital tools for depression diagno-
sis and monitoring.

In this study we examined the DAIC-WoZ recordings on
a sentence-level, extracted acoustic and textual features based
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on literature observational psychiatric characteristics of de-
pressed voice, and employed Mutual Information and Random
Forest importance scores to highlight which subsets of features
most contribute to depression-severity classification.

2 Materials and methods

For this study, dedicated software was written in Python (ver-
sion 3.11) [15], with a MATLAB® (The MathWorks, Inc.,
Natick, MA, USA) plugin for Collaborative Voice Analysis
Repository (COVAREP) features extraction.

Voice data were downloaded from DAIC-WoZ [4]. The
distribution of depression severity in the 189-participants co-
hort is portrayed in Table 1.

The interviewer questions and comments were removed
from the audio and textual data. Each response of the partic-
ipants was saved in an audio wav file and a text file. Single-
word sentences such as “yes” and “hello” were discarded. This
step yielded a set of 60 sentences on average per speaker of
mean duration of 22 seconds. The feature set included five
feature categories, summarised in Table 2, which includes ex-
amples for each category, literature-based indication of their
perceptual observations in depression, and the number of fea-
tures taken from each category. The acoustic categories in-
clude prosodic, cepstral and glottal, while textual categories
include syntactic and semantic. Acoustic features were ex-
tracted from the recordings using the COVAREP plugin. Tex-
tual features were extracted from the stored text files using the
Python libraries n1tk, string and scacy.

Feature selection employed the Mutual Information. This
straightforward method captured non-linear relationships be-
tween features and was not limited to discrete features [16].
The output number of features was determined as the top fifty
percentile of Mutual Information scores. Two Random For-
est classifiers were trained on the selected feature set. These
classifiers incorporated a built-in feature permutation impor-
tance metric and thus constituted a second selection specifi-
cally tuned to the classification task [17]. A class weighting
was applied in the classifier implementation to mitigate the

Tab. 1: Depression severity distribution of participants in DAIC-
WoZ corpus.

Depression severity rating  # participants

No depression 86
Mild 46
Moderate 30
Moderate severe 20
Severe 7
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effect of imbalance between the classes. The first classifier
was binary and discriminated the No-depression class from the
Depression classes. The second classifier performed a 5-class
classification for the five severity levels.

The classifiers provided importance scores for each fea-
ture which were aggregated per feature category. The first ag-
gregation grouped the two main categories of features: acous-
tic and textual. The second classifier grouped the five feature
types. The classifiers performance was evaluated using F1 and
accuracy metrics that allowed for comparison with previous
results.

3 Results

The number of features in each of the categories in the origi-
nal set and following the Mutual Information selection is pre-
sented in Table 3. The numbers are complemented by percent-
ages in parenthesis. The final column presents the selection
percentage out of the original set.

Only 44 % and 42 % from the cepstral and semantic fea-
ture subsets, the largest feature categories in the original set,
were selected in the first step. The next two, in terms of orig-
inal categories size, were the prosodic and glottal. Both in-
creased their proportion in the selected set. The smallest sub-
set, syntactic features, was least favoured in the Mutual In-
formation selection, and only 37 % of these features were se-
lected.

The accuracy and Fl-score for the 5-class classification
were 0.79 and 0.72, respectively. The binary classifier yielded
an accuracy and Fl-score of 0.89 and 0.87, respectively. The
feature importance scores aggregation across the five cate-
gories and across the two main categories, acoustic and tex-
tual, are shown in Table 4.

The importance scores for the binary depression detection
show a higher aggregated importance for the acoustic features
compared to the textual ones, of 81 % to 19 %. The classifi-
cation of the five depression-severity classes reveals a smaller
ratio of acoustic to textual importance ratio of 75 % to 25 %.

4 Discussion and conclusions

Our methodology employed machine learning in a transpar-
ent way and helped understand which categories of features
are most influential for the discrimination of depression sever-
ity levels. The application of Mutual Information selection
prior to the classification enabled a tracking of the feature
selection process and improved transparency, as did The ran-
dom forest classifier by providing feature importance ranking.
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Tab. 2: Acoustic and textual feature categories related to depression.

Feature category Examples Indication in depression # features

Prosodic Intonation, speech rate, pause duration, Reduced speech energy, pitch, and speech rate — 40
loudness, jitter, shimmer. perceived as monotonous, with lower intensity, slower

speed, and reduced pitch range.

Cepstral Mel-frequency cepstral coefficients, cep- Muscle tension, breath control, and vocal stability 54
stral peak prominence, spectral tilt. changes, indicated in weaker cepstral coefficients and

spectral flattening.

Glottal Amplitude quotients, harmonics ratio, har-  Changes in vocal fold behaviour due to emotional and 36
monic richness factor, maxima dispersion  psychological states, perceived as increased breathi-
quotient, and R glottal shape parameter. ness, weakness and inconsistent glottal cycles.

Syntactic Number and length of tokens, characters  Sentence structure, grammatical complexity, and fluency 19
and syllables, parts of speech, disfluency change indicated by shorter sentences, simpler gram-
rate. mar, less conjunctions, more pauses, false starts, and

repetition.

Semantic Words to vectors embeddings, words sen-  Increased self-focus and negative emotion, indicated by 5

timent and emotion scores, cognitive pro-
cessing words, pronoun usage, lexical

more “l, me” pronouns, fewer diverse words, and more
negative words.

richness indices.

Tab. 3: Number of features from each acoustic and textual feature
category in the initial set and the Mutual Information selected set.

Tab. 4: Importance of the acoustic and textual feature categories
in the five-class and binary random forest classifications, as well
as their aggregated totals.

Feature Initial Mutual Information Percent

category number selected number selected Feature category 5-class importance Binary importance
Prosodic 40 (0.20 %) 29 (0.28 %) 0.70 Prosodic 0.29 0.34

Cepstral 54 (0.26 %) 19 (0.23 %) 0.44 Cepstral 0.23 0.75 0.22 0.81
Glottal 36 (0.18 %) 25 (0.20 %) 0.56 Glottal 0.23 0.25

Syntactic 19 (0.09 %) 6 (0.07 %) 0.37 Syntactic 0.09 0.25 0.05 0.19
Semantic 55 (0.27 %) 23 (0.22%) 0.42 Semantic 0.16 ' 0.14 '

The proportion of the acoustic feature in the initial feature set
was 64 %. The combined two-tier feature selection of mutual
information and feature importance in optimising the random
forest classifier increased its proportion to 75-25 for five-class
and 81-19 in the binary classification. Within the acoustic cat-
egories, the prosodic features increased their proportion in the
Mutual Information selection and hold a larger importance
for both classifiers optimisation. This finding corroborate the
importance of prosody, which was reported in many emotion
recognition and mental state voice-based recognition studies.
This increased importance, however is higher for the binary
classification compared to the five-severity classes. This may
imply that in discriminating more severe depression levels,
other features become more important. Notably, in the five-
classes case, both textual feature categories, semantic and syn-
tactic have higher prominence compared to the binary classifi-
cation. The glottal features were indicated as important in both
feature selection tiers. These were least used in former studies
although their existence in depressed speech was perceived by

clinicians (cf. Table 2). These features, however, have distinct
overlap with prosodic features that were frequently shown as
important in emotional speech recognition in general and de-
pressed speech in particular [6, 7, 9-12, 14]. The accuracy of
the binary classifier is comparable to or higher than previous
studies that used the DAIC dataset for depression detection [6—
9, 12, 14]. These studies, however, used deep networks and
could not provide feature importance insights.

Importantly, our analysis refrained from using preprocess-
ing techniques that could alter subtle properties in the raw data.
Previous studies employed audio filtering, divided the record-
ing to small segments to enlarge the number samples for deep
learning, and used augmentation techniques either to enlarge
the samples or to balance classes imbalance in data [6, 7, 9].
Our methods did not apply noise-reduction filters, did not seg-
ment the participants response, which then remained as whole
sentence time unit, and did not apply augmentation. Natu-
rally this prohibited the use of deep learning, which needs a
much larger data size. Even for shallow learning, as our ran-
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dom forest classification, a feature space of 204 hand-crafted
features was too large and hence a feature selection was ap-
plied. The effects of not using filters or augmentation need to
be further examined. Listening to the recordings and examin-
ing the DAIC-WoZ recording protocol [4] yielded that record-
ings were relatively clean of noise. To quantitatively mea-
sure and validate noise reduction filters, a comparison of filter
usage effects on classification performance is needed. Simi-
larly, the effect of augmentation and up/down sampling tech-
niques need to be assessed. Importantly, these need to be as-
sessed for real-world implementation of speech-based depres-
sion recognition, where clean recording environments and bal-
anced classes of depression severity could not be assumed [2].

This study is preliminary, but reinforces the importance of
diverse acoustical and textual feature analysis in depression. It
highlights the potential of speech-based depression analysis in
accessible and affordable automated tools.
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