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Abstract: Pressure ulcers pose a threat, especially for older
people and ICU patients. Data-driven approaches could allow
for early detection and continuous evaluation. In this work,
a deep convolutional generative adversarial network is pre-
sented which is able to generate new images of pressure ulcers.
The cavities concerning the training dataset and the transfer-
learning strategy are analyzed to optimally supplement small
clinical datasets for more robust algorithm development.
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1 Introduction

Prolonged pressure and shear stress onto soft tissue can de-
stroy cells, cause inflammation, and ischemia-reperfusion in-
juries, which jointly lead to localized damage of the tissue.
Especially in patients with reduced mobility or older peo-
ple, the skin and underlying tissues are affected mostly above
bony prominences, resulting in the formation of pressure ul-
cers (PUs), also called pressure sores, pressure injuries, or de-
cubitus. Typically, the wound healing process stagnates in the
inflammatory phase leading to extensive hospital stays, medi-
cal attention, personal burden, high costs, risk of infection, and
increased mortality [1]. An analysis of the Global Burden of
Disease Study 2021 shows that the incidence of PUs has glob-
ally increased by 116% and the associated number of deaths
by 122% in the years from 1990 to 2021 [2]. In German hos-
pitals, 395,980 cases of having at least one PU were recorded
in 2021, mostly of stage 2 or higher [3]. Depending on the
depth of the affected tissue, PUs are classified into four stages
(1-4), unstageable and assumed deep tissue injuries, each ex-
posing a different layer of the skin with a different appearance
[1].

The continuous improvement of AI algorithms for image
processing have also been used to aid in the tasks of pressure
ulcer segmentation and classification [4]. However, the small
amount of PU images that is publicly available, is a common
problem. Generative AI networks can help to increase datasets
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or correct imbalances by creating and adding artificial images
[5]. Generative adversarial networks (GANs) have been shown
to achieve good results in unsupervised learning by using the
concept of adversarial learning between a generator and a dis-
criminator [6]. In 2015, Radford et al. proposed a GAN ver-
sion focusing more on 4 de-/convolutional layers instead of
linear or pooling layers, the deep convolutional GAN (DC-
GAN), for more refined features and colors in images of 64 by
64 pixels [7]. Subsequently, DCGANs with a maximum of 5
de-/convolutional layers, small datasets and a low image reso-
lution (smaller than 128 by 128 pixels) have been employed to
generate chronic wounds and skin lesions with moderate suc-
cess [8, 9]. Diffusion models are a different modern technique
for image generation using denoising but will not be discussed
here [10]. This work contributes another variant of the DC-
GAN trained on a bigger dataset resulting in images with a
higher resolution and clearer wound properties. Furthermore,
different transfer learning approaches are discussed.

2 Methods

The dataset for the training process contains PU images from
multiple publicly available datasets as well as images from a
clinical study conducted in the Geriatric Department (Med.
Klinik VI) of University Hospital RWTH Aachen (UKA),
which additionally provided more images of stage 1 and stage
2 PUs, which had been taken during regular treatments for
obligatory documentation and by patient agreement. The fa-
mous Medetec Wound Database (Medetec) [11], the AZH
Wound Database (AZH) [12], the database of the foot ul-
cer segmentation challenge (FUSeg) [13] and the WoundsDB
database [14] compose the publicly available part of the
dataset. Table 1 gives an overview of the distribution of im-
ages per class in the different data sources.

In order to assess the influence of the background, two
more datasets have been created based on the original one
(OD) using the skin mask of an existing segmentation net-
work for cropping (cropped dataset with less background, CD)
and masking (cropped and masked dataset without any back-
ground, MD) as can be seen in Figure 1. Figure 2 shows target
examples taken from the PU datasets (blue) in comparison to
those used for pre-training with successive transfer-learning
in this work (orange), which are the ImageNet dataset (more
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Tab. 1: Dataset overview.

Sources 1 2 3 4 unst. Total

AZH - - 26 6 31 63
FUSeg - 2 415 53 416 886
WoundsDB - - - - 26 26
Medetec - - 7 19 48 74
UKA 56 103 3 - - 162

Total per class 56 105 451 78 521 1211
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Fig. 1: Description of the three different datasets used: original,
cropped or masked and cropped with the help of a segmentation
network (skin is grey, wound is white).

than 14 mio. images) [15] and the Kaggle skin lesion dataset
(25331 images) [16–18].

The experiments have been conducted on a server with
GPUs using Visual Studio Code (Microsoft, Redmond, USA),
Python 3.9, the supervision platform by Weights&Biases
(Weights&Biases, San Francisco, USA), and the Pytorch
framework. Even though the basic characteristics of a DC-
GAN such as strided convolutions in the discriminator, Batch-
Norm, ReLU and Tanh activation in the generator were
met, some adaptations have been made. As applying trans-
posed convolutional layers lead to stability issues, upsam-
pling (mode: nearest) has been used instead. The Leaky ReLU
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Fig. 2: Examples of images from the PU source datasets (blue)
and the datasets used for pre-training (orange).

activation has been replaced with the similar but differen-
tiable SELU activation to help with faster convergence, and
the depth has been increased to a symmetrical pair of 6 con-
volutional layers in the generator and discriminator. Figure 3
shows the final structure of both networks. The input is a 100-
dimensional noise vector following a standard normal distribu-
tion 𝑍 ∼ 𝒩 (0, 1). The convoluting kernels had a size of 3x3,
stride was 2 (in the discriminator), and padding was set to 1.
The final layer of the discriminator had a sigmoid activation to
classify images into "real" or "fake" (binary).

Experiments without pre-trained networks (P-0), with a
pre-trained generator (P-G), and with both networks having
been pre-trained (P-GD) have been conducted. Kaggle’s skin
lesion dataset has been used for a 120-steps pre-training to let
the network learn the concepts of skin, features on the skin and
objects in the background. Furthermore, the decoder network
of a pre-trained (ImageNet) VGG autoencoder using 5 trans-
posed convolutions, BatchNorm and ReLU from [19] together
with an untrained DCGAN discriminator with 5 strided con-
volutions to match the reduced depth and image dimension of
224 by 224 pixels has been tested. All pairs of generator and
discriminator have been trained with the classic binary-cross-
entropy loss function (BCE) and the Adam optimizer. Dur-
ing one training step, the discriminator’s weights are updated
twice (real and fake image), while the generator’s weights are
only updated once.

Pre-processing included resizing to 256 by 256 pixels,
flip, rotation by 90 or -90 degrees and brightness and contrast
adjustments, all with a probability of 70%. For quantification
of the authenticity and diversity of the generated images, the
Fréchet Inception Distance (FID) score has been used, which
compares the mean and covariance of feature vectors gener-
ated by an Inception-v3 network between a set of real and a
set of generated images [20]. To achieve a stable training pro-
cess, a batch size of 4, a similar learning rate of smaller than
0.0008 in both antagonists, and using SELU and ReLU activa-
tions were necessary. Adding the convolutional layer to trans-
form the 32 channels after the last upsampling layer first into
16 and subsequently into 3 color channels has proven useful
for training stability.

3 Results

The FID score is a relative score that optimally should ap-
proach 0. For baselining, the original dataset has been split
into two halves and the FID score of comparing real images
with real images resulted in an FID score of 53.29. Compar-
ing 25,331 acceptable images of the pre-trained generator with
the real skin lesion dataset gave a FID score of 129.91. Con-
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Fig. 3: Network structure of the DCGAN using upsampling and the SELU activation function.

sequently, FID scores between 50 and 130 have been consid-
ered optimal to satisfactory. In order to evaluate the generator’s
performance qualitatively, five criteria have been evaluated in
addition to the FID score: presence of artifacts, realistic skin
color, realistic background, meaningful shape of the body part,
and diversity of the results. Figure 4 presents exemplary results
of the most successful combinations of dataset, architecture
and transfer-learning strategy noted as Gx ("generator x").

4 Discussion

The high FID score among the original dataset itself has shown
the large diversity of images, correlating with the difficulty of
the generation task, justifying deeper GAN structures. This is
also supported by the fact that the pre-trained VGG-16 genera-
tor did not perform as well as the DCGAN variants (G6 vs. G1-
G4). However, the FID score alone has been found to be insuf-
ficient to guarantee the generation of good-quality images. It
only allows for a rough quality assessment (see G4 vs. G5). Se-
lecting networks according to FID and quality metrics resulted
in generators that were able to generate sufficiently accurate
PU images with different shapes of wounds and body parts.
Reconstructing the background, however, turned out to be a
difficult task for all generators. Training on the masked dataset
showed the best performance in skin and wound features (G3).
If only the wound is of interest, this training strategy is recom-
mended. If the background is of relevance, the two-stage ap-
proach of first training without background and after that train-
ing on the same dataset with background achieved good results
(G4). The partially disjunct skin parts due to the cropping and
masking technique also cause disjunct skin areas in generated
images. Apart from that, pre-training and transfer-learning on
the skin lesion dataset reduced the quality of the images, at
least in the number of epochs trained. As the dataset size is rel-
atively small compared to the number of trainable parameters,

it has originally been assumed that pre-training would improve
the results. Another general problem that has been identified,
is that sometimes the generated images contain no wound at
all (e.g. G6 right), even though all training images have dis-
played wounds. A possible cause is that in most images, the
wound covers fewer pixels than the skin.

5 Conclusion

The combination of the dataset and the DCGAN structure re-
sulted in images with better skin texture, wound features, and
colors compared to previous publications, but showed prob-
lems with background creation and identifying the concepts
of wound, skin, and background individually. The generated
images are expected to be sufficient to contribute to enhance-
ments in algorithms focusing on the wound part. Reducing
the depth of the discriminator seems promising to support a
more similar learning progress in the adversarial network pair.
Furthermore, being able to generate PU images of a specific
class or to generate background, skin, and wounds separately
and adjusting the cropping and masking technique is expected
to improve the image quality. Finally, a validation by clinical
experts should be performed.
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Fig. 4: Exemplary results of the best tests regarding DCGANs without pre-training (P, G1-G3), with a generator trained on the MD (G4),
a fully pre-trained DCGAN (G5) and a pre-trained VGG16 as generator (G6). The epoch (E) and the dataset (D) are noted.
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