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Abstract: Accurate estimation of left ventricular volume
(LVV) is essential for managing cardiovascular diseases such
as heart failure and myocardial infarction. A promising ap-
proach for continuous LVV estimation is using intracardiac
admittance measurements. The prevalent methods in literature
are based on analytical models, for which several simplifying
assumptions had to be made. It is not clear if the models are the
optimal choice to describe the relationship between the admit-
tance measurement and the LV V. This study explores intracar-
diac admittance measurements as a promising alternative for
continuous LVV estimation. We utilized symbolic regression
to derive mathematical models describing the relationship be-
tween intracardiac admittance measurements and LVV with-
out predefined structures and compare their performance with
classical models from literature. Through simulations based on
a cylindrical left ventricle model, we rediscovered the model
of Baan and identified further interpretable models that out-
perform the approaches by Baan and Wei on our dataset. Our
findings support that symbolic regression can uncover mean-
ingful patterns in biomedical data, paving the way for more
efficient diagnostic tools in cardiovascular health monitoring.
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1 Introduction

Cardiovascular diseases are a major cause of mortality world-
wide, with around 20 million deaths reported in 2022 [1]. For
many of these patients, the health outcome depends on indi-
vidualized care and close monitoring of their vital parameters.
Among the important vital parameters, the left ventricular vol-
ume (LVV) has a high prognostic value and close monitoring
of the LVV has the potential to improve patient outcomes [2].

The improved information about the patient state may al-
low physicians to make better-informed decisions. Further po-
tential is the continuous monitoring of patients on mechanical
circulatory support [3]. Continuous monitoring may enable au-
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tomatic changes in the support provided by the mechanical as-
sist device, thereby improving patient care and reducing staff
workload [4].

Established techniques for LVV monitoring, such as
echocardiography and magnetic resonance imaging, while ef-
fective, often require significant manual intervention and are
therefore not suitable for continuous monitoring [5].

Intracardiac represent a
promising approach for continuous LVV estimation. This

admittance measurements

approach involves the use of a multi-electrode catheter po-
sitioned within the left ventricle (LV) to measure electrical
admittance changes associated with varying blood volumes
during the cardiac cycle. The two most well established meth-
ods were developed by Baan et al. [6] and Wei et al. [7].
The method of Baan et al. uses multiple conductance mea-
surements and postulates a linear relationship between this
combined measured signal and the LVV. The method of Wei
et al. uses a single conductance measurement and assumes
a non-linear relationship between this measurement and the
LVV. In this method the phase information of the admittance
measurement is used for the calibration of the model pa-
rameters, therefore this method is also called the admittance
method while the method of Baan et al. is also referred to as
the conductance method.

Both methods are based on simple analytical models
and were developed through insight of the authors and man-
ual specification of the problem structure. However, the ac-
tual relationship between the measurement and the LVV is
more complex and is only partially captured through these ap-
proaches.

We analyzed the influence of the LVV and the conduc-
tivity of blood on the measurements and evaluated possible
models describing this relationship. The intracardiac admit-
tance measurements were simulated for a simplified ventricle
model similar to those used by Baan and Wei. The LVV and
the blood conductivity were varied to cover the range of phys-
iological and pathological values for different patients. Using
this dataset, we used symbolic regression to identify math-
ematical functions that best fit the data without assuming a
predefined model form. In this way, we have identified inter-
pretable models that fit the dataset and performed a prelimi-
nary comparison with the classical models from literature.
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2 Methods

2.1 Dataset

We generated a synthetic dataset through a series of simula-
tions to analyze the admittance at different operating points.
To have a high correspondence to the analytical modeling ap-
proaches of Baan and Wei we used a similar geometry for our
model. The model is based on the cylindrical LV model from
our previous works [8, 9] and has shown a high qualitative
agreement to clinical data.

The model approximates the LV by three compartments:
blood in the ventricle, myocardium, and surrounding tissue.
The LV is a cylinder with a fixed length of 90 mm and a vari-
able diameter depending on the LVV. The myocardium has a
uniform fixed thickness of 12 mm and is surrounded by the
background tissue model as lung tissue.

A 10-electrode catheter is positioned in the center of the
LV. In agreement with Baan and Wei, the lowest electrode,
electrode 1, is placed just above the apex; the top electrode,
electrode 10, is placed just outside the ventricle. This setup
uses the four-point probe method, with 2 electrodes for cur-
rent injection and 2 electrodes for voltage measurement. The
complete model is shown in Fig. 1.
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Fig. 1: The simulation model for a LVV of 25 mL (left) and 190 mL
(right). The catheter in the center is surrounded by blood, my-
ocardium, and background tissue.

The model parameters can be chosen freely, of primary
interest are the variations of the LVV and the conductivity of
blood oy;. Thus, only these two parameters are varied, while
all other parameters are kept fixed at their physiological val-
ues.
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The LVV has a high inter- and intra-patient variability; to
cover the physiological and pathological range [10], we vary
the LVV from 20 mL up to 190 mL.

The conductivity of blood is known to be influenced by
many factors, such as temperature [11], haematocrit [12], as
well as anticoagulants [13], which are often required during
treatment of patients on mechanical circulatory support. Since
there is no clear literature reference, we chose the wide range
of 0.5 S/m to 0.8 S/m. All other electrical properties are chosen
as described in [9].

The parameters LVV and oy; are varied in the chosen in-
tervals. As sampling method, we used Latin Hypercube Sam-
pling to generate near-random operating points [14].

The admittance measurements are simulated by a finite el-
ement method simulation using the Matlab toolbox EIDORS
[15]. The electrical fields for a measurement were simulated to
determine the admittance. Therefore, a fixed current was ap-
plied between the injection electrodes, here always electrodes
1 and 10, and the complex potential difference U; ; of two
measurement electrodes 4 and j was determined. Through this
the transfer admittance Y; ; can be calculated
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2.2 Reference Models

To evaluate the performance of newly found models we com-
pare them with the state-of-the-art models. These are the mod-
els of Baan [6] and Wei [7], which are briefly described in the
following. We have excluded their calibration procedure and
instead fitted them directly on the dataset using a least squares
approach.

Both methods use four-point probe measurements with
current injection in the outermost electrodes (1, 10) and use
only the conductance (real part of the admittance) to calculate
the LVV. In the method of Baan et al. the conductance signal
GBaan 15 @ sum of multiple measurements. The method of Wei
et al. uses only a single measurement Gyy; with the measure-
ment at the electrodes adjacent to the injection electrodes. For
the 10-electrode catheter these measurements are given by

8
1
Ghaan = ) R(YViir1) + 3R(V23) @
=2
Gwei = R(Y2,9) 3

The Baan et al. method establishes the relationship be-
tween the LVVp,,, and the conductance Gp,ay. Rearranged
for Gpaan and merging the constants to the new parameters 6;
yields

GBaan = 010 LVV + 09 4)
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The Wei et al. method establishes the relationship between
the LV Vi and the conductance Gvyi. Rearranging for Gy
and renaming the constants to the new parameters 60; yields

1

+ 6o )

Gwei = —5—
)
01+ oo LVV

2.3 Symbolic Regression

We have used symbolic regression (SR) to discover mathemat-
ical models that best describe the dataset without specifying a
predefined model structure. SR does not rely on a predefined
model structure, but instead employs techniques from genetic
programming and evolutionary algorithms to explore the space
of potential equations of different model structures. The mod-
els are formulated as expression trees, with operators, inputs,
or constants as the nodes. Operator nodes can have one or two
children (unary or binary operators), while constant and inputs
are leaf nodes (no children). We determined two sets of equa-
tions for functions f with

G=f(LVV,ou) , (6)

where the output G is either Gpaan O Gwei-

Model training was done in the Julia programming lan-
guage using the SymbolicRegression.jl package [16]. We
trained 30 populations with a total of about 800 models for
50000 iterations. During each iteration, the models were mod-
ified heuristically by mutations, cross-overs, simplifications,
and parameter fitting.

The complexity of a model can be described by the size
of the expression tree, which is the number of nodes (opera-
tors, inputs, or constants). For the classical models of Baan, eq.
(4), and Wei, eq. (5), the complexity is 7 and 10 respectively.
For the SR approach we limit the complexity to 20 nodes, so
that the algorithm can explore equations with 1 node up to 20
nodes. We also restrict the depth of the expression tree to 8
levels to avoid excessive nesting of functions.

In SR the generated models can include arbitrary mathe-
matical operations to generate explainable models the only al-
lowed operators are the binary operators: addition, subtraction,
multiplication, division, and exponential as well as the unary
inverse operator. We excluded other unary operators (such as
sin and tan) because we do not have periodicity in the dataset.

We divided the data into training and test sets. For the
training we randomly selected 80 % of the data and used the
remaining 20 % as the test set. Since the dataset is quite large,
we further performed the training only on random batches of
128 data points to improve the performance of the SR fitting
procedure. As the performance metric we chose the L2 norm
since our dataset is free of measurement errors and outliers.

3 Results

In this study, we used SR to derive mathematical models that
can accurately describe the relationship between intracardiac
admittance measurements, focusing specifically on the con-
ductance signals Gpaan and Gwe; and LVV.

The performance of the SR-derived models for the output
GBaan 1 shown in Fig. 2. Here we have plotted the normalized
training loss against the model complexity, measured by the
number of nodes in the expression tree. All models found via
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Fig. 2: Loss over Complexity for output Ggaan-

SR with a loss below 1 are shown in blue. The model with
complexity 1 is simply a constant. For higher complexities,
models with better fit become possible. However, some models
perform even worse due to the heuristic approach which also
generates poorly performing models. The best-fitting models
are made possible at the highest complexities, but they overfit
the dataset. The Pareto frontier highlights models with optimal
trade-offs between accuracy (small loss) and simplicity (low
complexity); it is shown in yellow.

Notably, Baan’s classical model, shown as a green circle,
has been rediscovered and is Pareto optimal. Thus, it is part of
the Pareto frontier, indicating that there is no better model at
the same or lower complexity. However, SR identified several
models with substantially smaller loss with only one additional
node. These models also perform well on the test dataset, sug-
gesting potential improvements over Baan’s approach when
allowing for more complex equations.

For the output Gwygi, Fig.3 presents a similar analysis
where SR-generated models are compared with Wei’s classical
model. The overall performance is similar, with many models
fitting the data well. In contrast to Baan’s case, Wei’s model
does not lie on the Pareto frontier; instead, it is surpassed by
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Fig. 3: Loss over Complexity for output Gye;.

simpler models achieving lower losses. We have confirmed a
similar performance of these models on the test dataset, thus
showing that this is not due to overfitting.

4 Discussion and Conclusion

In this study, we explored SR for deriving mathematical mod-
els for estimating LVV using intracardiac admittance mea-
surements. While model generation via SR is an automated
machine learning approach, the generated models are explicit
mathematical expressions, making them easy to interpret and
compare to analytical models. Our findings show that SR can
effectively generate models that match or surpass the perfor-
mance of established methods by Baan and Wei on our dataset.
For measurements akin to Baan, we have rediscovered Baan’s
model and have shown that it is Pareto optimal. Baan’s model
has been clinically proven; the agreement with our findings,
thus, supports our use of a synthetic dataset for the initial
model discovery. For measurements akin to Wei, several SR-
derived models have been found with a lower complexity and
higher accuracy on our dataset than Wei’s model. These mod-
els are promising, but require further analysis and validation
with a clinical dataset.

This study found promising candidate models for improv-
ing the accuracy of LVV estimation and demonstrates the po-
tential of SR as a powerful data-driven modeling approach in
biomedical research.
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