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Abstract:
Undetected fluid-filled ovarian cysts can lead to severe com-
plications like rupture and hemorrhage, requiring emergency
medical interventions. Ultrasound is a commonly used imag-
ing modality for detecting cysts and tumors. However, it
presents challenges with weak contrast, blurred boundaries,
and noise affecting the diagnostic reliability. Segment Any-
thing Model (SAM) is a powerful framework for image seg-
mentation, but struggles in medical imaging tasks due to its
lack of domain-specific knowledge. MedSAM extends SAM
to clinical data and demonstrates superior capabilities across
various adnexal regions and imaging modalities. It lacks speci-
ficity for ultrasound images and underperforms in ovarian tu-
mor segmentation. This limitation is addressed by efficient
adaptation of MedSAM using attention-based adapter mod-
ules. Instead of fine-tuning the entire MedSAM, incorporating
an adapter module is proven to be an efficient training strat-
egy. The proposed approach optimizes model training using
an attention based adapter, guided by a binary cross-entropy
loss function with logits to ensure numerical stability. The
adapted model achieves a dice score of 70%, demonstrating
robust segmentation capabilities. With its ability to produce
sharp boundaries and reliably segment regions of interest, this
work highlights the potential of an attention-driven discrimi-
native learning framework for ovarian tumor detection, con-
tributing towards automated and effective computer-aided di-
agnosis of ovarian cancer.
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1 Introduction

Ovarian cancer is the eighth most common cancer among
women [1], accounting for over one-third of newly diagnosed
cancer cases worldwide [2]. It is also one of the deadliest
gynecological malignancies, frequently diagnosed at an ad-
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vanced stage due to a lack of early-stage symptoms and ef-
fective screening methods.

Ovarian cancer originates in the ovaries, forming tumors
or cystic masses within the pelvic region. Early identifica-
tion, detection and segmentation of ovarian masses such as
cysts and tumors are crucial for accurate diagnosis and better
treatment. Among the medical imaging modalities, ultrasound
(US) is one of the most commonly used reliable methods for
evaluating adnexal masses, due to its non-ionizing nature, ac-
cessibility, and cost-effectiveness [3] [4] . Ultrasound imag-
ing is particularly predominant in gynecological diagnostics,
which makes it an essential tool in ovarian cancer detection.

Ultrasound imaging does present with unique challenges
compared to other modalities. Low image resolution, noise
and artifacts can lead to blurry ovarian mass edges, mak-
ing it difficult for both medical professionals and computer
vision-based imaging software to accurately identify tumors
and cysts. These challenges can result in error-prone analysis
or significant delays in detecting regions of interest within the
ultrasound scans.

To address these limitations, there is a growing need for
highly robust data-driven models that can improve accuracy
and reduce latency in ultrasound-based ovarian cancer screen-
ing. Deep learning architectures have shown remarkable suc-
cess in the medical imaging domain [5]. Convolutional neu-
ral networks (CNN) are used to extract spatial features while
transformer-based models are used to understand long-range
dependencies within images [6] [7]. They have been shown to
improve the accuracy of tumor detection and segmentation in
ultrasound imaging.

Segment Anything Model (SAM) [8] is a widely recog-
nized benchmark in natural image segmentation, illustrating
versatility and efficiency. However, its direct application to
medical imaging tasks has been shown to be suboptimal [9]
[10]. This performance gap arises due to the significant do-
main shift between natural and medical images as the latter
requires specialized contextual understanding. To overcome
this limitation and extend the robustness of SAM to medical
image segmentation, different studies have explored adapta-
tion strategies that leverage large-scale pretraining on natural
images. MedSAM [11] has emerged as a promising frame-
work, achieving significant improvement across various med-
ical imaging modalities. Despite its effectiveness, MedSAM
struggles with ovarian ultrasound imaging, mainly due to its
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Fig. 1: Proposed work flow schematic

lack of modality-specific adaptation. In this context, this study
proposes an efficient attention-based adaptation of MedSAM
for ovarian cancer detection. The aim is to enhance the seg-
mentation performance for ovarian masses, including cysts
and tumors, through improving boundary sharpness and seg-
mentation accuracy.

2 Methodology

The workflow of the proposed methodology is shown in the
Figure 1

2.1 Dataset

In this study, Ovarian tumor images are obtained from pub-
licly available Multi-Modality Ovarian Tumor Ultrasound
(MMOTU) dataset [12] dataset. 1469 standard 2D ultrasound
images are considered with pixel-wise semantic annotations
and global categorical labels for segmentation and classifica-
tion tasks. These images are preprocessed for intensity normal-
ization and resized to the network resolution ensuring efficient
training and inference.

2.2 Model

SAM model architecture contains three primary components
namely, image encoder, prompt encoder and mask decoder.
Pre-trained SAM uses ViT as image encoder with global atten-
tion blocks to extract hierarchical image features. The prompt
encoder processes spatial cues, including points and bounding
boxes, and generates positional embeddings. Mask decoder
is a transformer-style decoder block that has two-way cross-
attention to facilitate the interaction between Image embed-
dings and prompt embeddings.

To enhance the adaptability of SAM for ovarian ultra-
sound segmentation, adapter modules are added into the ar-
chitecture by MedSAM framework using a bottleneck de-
sign strategy. Each adapter consists of a down-projection layer
to reduce dimensionality, followed by a non-linear activation
function (ReLU) and an up-projection layer to restore dimen-

sionality. These adapters are integrated into the SAM archi-
tecture as follows: two adapters per ViT block in the image
encoder and three adapters per ViT block in the mask decoder
branch. This design ensures efficient fine-tuning without over-
fitting in addition to preserving the feature extraction capabil-
ities of the SAM model.

The dataset is split into a 70-30 ratio for training and test-
ing. The model is trained for 30 epochs using the Adam op-
timizer function with a learning rate of 1e-4. Binary Cross
Entropy with Logits Loss ( BCEWithLogitsLoss ) function is
used as the loss criterion, while validation is performed using
the DICE score to evaluate segmentation performance.

2.2.1 Loss function

The loss function used for model training is BCEWithLog-
itsLoss. Instead of applying a sigmoid activation followed by
binary cross-entropy loss as given in eqn (1) and (2) separately,
BCEWithLogitsLoss integrates both steps into a single func-
tion as shown in eqn (3), to ensure numerical stability. Instabil-
ity is caused in binary cross-entropy loss due to extreme proba-
bility values. When probabilities reach 0 or 1, logarithm-based
operations can cause precision issues in floating-point repre-
sentations, potentially causing either overflow or underflow.
Similarly, using a standalone sigmoid function introduces an
exponent in the denominator, which can also lead to numerical
instability. To avoid this, BCEWithLogitsLoss stabilize com-
putations by preventing the extreme values from dominating
the calculations. This improves numerical precision, and leads
to more reliable tumor segmentation in ultrasound images.

𝜎(𝑧) =
1

1 + 𝑒−𝑧
(1)

ℒ𝐵𝐶𝐸 = − 1

𝑁

𝑁∑︁
𝑖=1

[𝑦𝑖 log 𝑦𝑖 + (1− 𝑦𝑖) log(1− 𝑦𝑖)] (2)

ℒ𝐵𝐶𝐸𝐿𝑜𝑔𝑖𝑡𝑠 =
1

𝑁

𝑁∑︁
𝑖=1

[︁
log(1 + 𝑒−𝑧) + 𝑧(1− 𝑦𝑖)

]︁
(3)

Here, 𝑁 represents the total number of samples, 𝑦𝑖 is the
true label (either 0 or 1) for the 𝑖-th sample and 𝑦𝑖 represents
the predicted probability of the 𝑖-th sample.
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3 Results

Figure 2 presents representative ovarian ultrasound images
and their corresponding segmented ovarian mass, where the
presence of a cyst or tumor is indicated in the center. This
visualization highlights the reflective properties of the sonar
waves, which are important in distinguishing the tissue types
present in the image. It is also essential to note the presence
of speckle noise, which is a common artifact in ultrasound im-
ages that can complicate accurate segmentation. Ultrasound
device markings may also introduce inconsistencies or noise,
and the model must be capable of distinguishing between rel-
evant features and the noise present in the image.

The training and validation performance metrics of the
model is illustrated in Figure 3. The training loss exhibits a
steady decline over the epochs, indicating the ability of the
model to learn ovarian tumor-specific features. Likewise, the
decreasing validation loss demonstrates the capability of the
model to generalize to unseen data. The image encoder de-
signed in this study captures patch-wise long-term dependen-
cies across the image, thereby identifying global ovarian mass
boundaries while preserving fine-grained features. This ability
to recognize the global tumor boundaries is critical for generat-
ing an accurate mask. By pooling information from all tumor
pixels, the encoder facilitates a more comprehensive under-
standing of the shape and position of the tumor. The decoder
leverages this knowledge for precise segmentation of the tu-
mor pixels from the image. The adapted MedSAM model for
ovarian ultrasound effectively captures discriminative features
of cysts and tumors, enabling precise segmentation of ovarian
masses.

Dice coefficient is a widely used similarity metric in im-
age segmentation tasks to quantify the overlap between the
predicted segmentation mask and ground truth. It ranges from
0 to 1, where 0 indicates no overlap and 1 implies perfect over-
lap with the annotation. It offers a robust measure of pixel wise
agreement in binary mask evaluations. Intersection of Union
(IoU), also called Jaccard index, measures the amount of over-
lap between the predicted segmentation mask and the ground
truth mask. While DICE measures the similarity between the
prediction and ground truth masks, IoU provides the precise
overlap relative to the combined area.

Variation of IoU and Dice coefficient score across epochs
is plotted in Figure 4. The graphs show consistent improve-
ment across epochs on the validation dataset, suggesting that
the predicted segmentation masks progressively achieve better
alignment with ground truth annotations. By the end of train-
ing, the model attains a maximum Dice score of about 0.7,
with a minimum loss of 0.25 at a learning rate of 1e-4.

Fig. 2: Ovarian ultrasound tumor images and corresponding
ground truth masks

Fig. 3: Variation of Train and Validation loss across epoch

Fig. 4: Variation of IoU and Dice coefficient during training

The qualitative performance of the model is demonstrated
in Figure 5, where representative test images, confidence
maps, final thresholded segmentation masks, and ground truth
images are presented. The confidence maps highlight pixel-
wise probability estimates for tumor regions while preserving
structural details such as image texture, wall boundaries, and
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Fig. 5: Representative segmented images using trained MedSAM
model (a) Input image, (b) Confidence map, (c) Prediction mask,
(d) Ground truth

hierarchical features. Thresholding is subsequently applied to
generate the final binary segmentation masks. Visual interpre-
tation of the obtained segmentation mask demonstrates strong
similarity with the corresponding ground truth masks, making
this approach reliable for use in the automated segmentation
of ovarian tumors.

4 Conclusion

This study investigates the adaptation of MedSAM for ovarian
tumor and cyst segmentation. The introduction of the adapter
modules in SAM framework enabled efficient attention-based
adaptation to ultrasound images and ovarian tumor data. The
gradual decline of validation loss indicates that the adapter
module facilitates optimal feature learning in fine tuning of
MedSAM to medical images. Furthermore, Dice coefficient
of about 70% indicates reliable segmentation accuracy and
strong overlap between the predicted and ground truth masks.
These results demonstrate that this approach effectively seg-
ments ovarian masses with improved precision and robustness
and has the potential for integration into automated ovarian
cancer diagnosis, offering a reliable tool for accurate and low-
latency tumor detection in clinical settings.
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