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Abstract: Minimally invasive transcatheter aortic valve 

replacement (TAVR) has become the preferred procedure for 

patients with aortic valve stenosis or insufficiency who are at 

high risk for conventional open-heart surgery. The favorable 

clinical outcomes observed in high-risk patients have led to an 

expansion of the eligible cohort, now including intermediate- 

and low-risk patients. A critical aspect of advancing TAVR 

procedures lies in preoperative simulation, which in future can 

integrate patient-specific in-silico deployment simulations and 

post-deployment fluid mechanics assessments. In light of the 

aforementioned context, this study investigates the volumetric 

distribution of calcifications in the aortic cusps of a TAVR 

patient population and explores whether naturally occurring 

clusters should be considered in in-silico simulations. We 

analyze clustering results based on different methods for 

feature extraction, using circular measured volumetric 

calcification distributions. The clustering method applied is 

hierarchical clustering. Our findings identify distinct 

calcification clusters across different feature extraction 

methods. The Framework can be incorporated into in-silico 

trials and clinical studies assessing the impact of calcification 

patterns on clinical outcomes and TAVR device optimization. 
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1 Introduction 

The minimally invasive implantation of transcatheter aortic 

valve replacement (TAVR) has become the standard 

procedure for patients with severe aortic valve stenosis or 

insufficiency who are considered high-risk candidates for open 

surgery. Given its promising clinical outcomes, there is 

ongoing debate about expanding TAVR eligibility to include 

patients with intermediate or even low surgical risk. [1]. To 

further enhance clinical outcomes, preoperative TAVR 

planning approaches—including patient-specific in-silico 

deployment simulations and post-deployment flow analyses—

are being actively explored. Numerical simulation models for 

TAVR deployment in patient-specific geometries have already 

been developed and applied, as demonstrated in studies such 

as [2]. Certain research groups are investigating the 

development of virtual cohorts using shape modeling 

techniques to adopt a more comprehensive, population-based 

approach, allowing for the generation of synthetic patient 

geometries. For instance, Verstraeten et al. developed a shape 

model of the aortic root of TAVR patients [3]. 

In this context, gaining deeper insights into the volumetric 

calcification patterns of real clinical TAVR cohorts is 

essential. More explicitly, ensuring a robust modeling 

approach requires accurately capturing naturally occurring 

calcification patterns, so they can be appropriately 

incorporated into numerical modeling techniques. 

In this study, we investigate whether distinct, naturally 

occurring calcification patterns exist in TAVR patients and 

whether these patterns can be grouped into meaningful 

clusters. To achieve this, we present a cluster analysis that 

explores different feature extraction methods, clusters circular 

measured calcification volumes based on the extracted 

features, and evaluate the resulting clusters using internal 

cluster validation metrics and visual inspection. Among these 

methods, we include Wasserstein-PCA for circular measures, 

recently proposed by [4], which appears to be particularly 

well-suited for this type of analysis. 

Based on this calcification clustering framework and results, 

we aim to establish a robust baseline for future analyses 

focused on modeling realistic calcification patterns in virtual 

cohorts. These cohorts can be integrated into in-silico 

modeling frameworks to evaluate the impact of calcification 

patterns on the TAVR procedure and subsequent clinical 

outcomes. 
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2 Material and methods 

2.1 Data processing of calcified TAVR 
populations 

The cluster analysis is based on 96 post-operative TAVR CT 

patient datasets provided by the Department of Cardiology at 

the Rostock University Medical Center. The patient data are 

uniform distributed between female and male patients, with an 

average age of 86 ± 17 years. The reconstruction of the aortic 

root and the calcifications was previously described in [5]. 

Variations in the aortic root within the population were 

modelled using a shape model based on principal component 

analysis (PCA). By combining this approach with a mapping 

routine between a mean aortic root geometry and individual 

patient anatomies, as described in [5], calcification volumes 

were normalized (CVn) onto the mean aortic root. In this 

study, we focus exclusively on calcifications in the region of 

the aortic valve and root, specifically between the annulus and 

the sinotubular junction (STJ). We propose investigating the 

calcifications as a pseudo-circular volumetric distribution 

spanning the aortic root in a circular manner, with the axis 

aligned from proximal to distal locations, following the aortic 

valve orientation. We refer to it as a "pseudo-circular 

distribution" because the segmentation is not based on 

equidistant points along the entire circle. Instead, the circle is 

first divided into three segments corresponding to the three 

cusps: the left coronary cusp (LCC), the right coronary cusp 

(RCC), and the non-coronary cusp (NCC). Within each of 

these three segments, equidistant points are placed along the 

curve to further segment the calcifications and calculate their 

volumes within these subdivisions, as illustrated in Figure 1. 

Using this approach, we gain a more intuitive 

understanding of the circular position of calcifications while 

accounting for the different sizes of the cusp regions. The 

segmentation and cluster analysis were performed using 

PyVista library within a custom Python script [6]. In this 

analysis, eleven segments were used per cusp. 

In the following, the CVn distributions are represented on 

a unit circle with equidistant segments described by the angle 

φ. This should be kept in mind when interpreting the results 

(see Figure 1 for an example). The pseudo-circular measured 

CVn will hereafter be referred to simply as CVn. 

2.2 Cluster analysis of calcified TAVR 
populations 

Based on CVn, we implemented a clustering routine, testing 

five different feature extraction mechanisms, which will be 

described in the following section. Using the extracted 

features, we applied a clustering algorithm to identify distinct 

calcification patterns. 

2.2.1 Feature extraction on the calc volume 
distribution 

As one of the feature extraction methods we implemented a 

PCA on the raw data consisting of CVn ordered according to 

φ as input. The second feature extraction method is the 

Elliptical Fourier Descriptor (EFD), introduced by [7]. This 

method describes the closed curve formed by the CVn 

distribution using Fourier sine and cosine functions. The level 

of detail captured in the shape representation is controlled by 

the parameter h, which determines the amount of higher-

frequency components included. In this study 

h = 5, 10, and 20 were analyzed. The python library spatial-

efd was used [8]. The third method is a wavelet transform-

based feature extraction technique, in which CVn is 

decomposed into a series of approximation coefficients using 

basis functions [9]. We employed the Haar wavelet transform, 

by using PyWavelets [10], and used 100 coefficients to 

describe CVn distribution and applied PCA analysis on this 

features (WT-PCA). Furthermore, we tested a recently 

published method, the so called Wasserstein-PCA (WA-PCA) 

on circular domains [4]. This approach operates in the 

Wasserstein space of probability measures supported on the 

 

Figure 1: (A) Exemplary calcified aortic roots of TAVR patients, colored by radial angle φ, (B) and data processing routine extracting the 

circular measured pseudo-circular calcification volume distribution. 
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unit circle, combined with PCA. For all PCA analyses, we 

retained components that explain > 95 % of the variance in the 

input data. 

2.2.2 Cluster analysis 

We performed agglomerative hierarchical clustering using 

Ward's linkage method, by means of the Scikit-learn python 

module [11]. To determine the optimal number of clusters, we 

tested different cluster numbers and computed internal cluster 

evaluation metrics, including the silhouette score and 

Calinski-Harabasz index (CHI). To assess the robustness and 

generalizability of the clustering process, we randomly 

sampled a subset of the cohort (80 %), which was included in 

the clustering process. This procedure was repeated five times, 

and we averaged the computed internal evaluation metrics. 

3 Results and Discussion 

3.1 Internal evaluation of the 
calcification cluster 

For each clustering result obtained from all feature extraction 

methods, the silhouette score and CHI were visualized across 

varying cluster numbers. These values were computed using 

the hierarchical clustering method and are presented with a 

banded standard deviation (scaled by 0.5 for improved 

visualization) based on a random train-test split of the CVn 

data. To determine the optimal number of clusters, we aimed 

to identify configurations with more than two clusters. A 

distinct and meaningful cluster number was identified for the 

EFD method, both with and without PCA applied to the 

features. The results for different harmonic choices were 

highly similar, all indicating an optimal cluster number of four, 

as suggested by both the silhouette score and CHI. Applying 

PCA directly to the raw data resulted in a rapid decline in both 

the silhouette score and CHI, with an optimal cluster number 

of three selected for visualization. For the WT feature 

extraction method, the highest silhouette score for number of 

cluster > 2 was observed at five cluster when combined with 

PCA. Clustering based on the raw WT features showed a 

gradual decrease in silhouette scores up to ten cluster. Finally, 

clustering based on Wasserstein PCA (WA-PCA) extracted 

features exhibited relatively small variations in silhouette 

scores as the cluster number increased. However, a slight 

inflection point was observed at nine cluster, while both CHI 

and the silhouette score plot indicated an optimal cluster 

number of three. 

 

Figure 2: Internal cluster evaluation metrics computed for 

different cluster numbers using various feature extraction 

methods in clustering pseudo-circular volumetric calcification 

distributions. From left to right: Silhouette score and Calinski-

Harabasz index (CHI). 

3.2 Visual calcification cluster 

evaluation 

The most distinct and meaningful clusters, based on the 

optimal cluster numbers discussed in Section 3.1, are 

visualized below for WA-PCA, PCA on raw data, EFD-PCA, 

and WT-PCA. For each cluster, the median along with the 25th 

and 75th percentiles are shown. The number of patients in each 

cluster is annotated. To facilitate interpretation, clusters with 

visually similar characteristics across different feature 

selection methods have been grouped together. The most 

visually identifiable cluster, C1, is characterized by a high 

CVn in the NCC region, accompanied by a smaller but 

relatively high amount of CVn in the RCC and LCC regions 

compared to other clusters. This finding holds for all feature 

selection methods. In EFD-PCA, this cluster is further 

subdivided, with one sub cluster exhibiting calcifications 

localized solely in the NCC region. WA-PCA emphasizes the 

identification of concentrated CVn corresponding to specific 

cusp regions, with C2 exhibiting higher CVn in RCC and C3 

showing higher CVn in LCC. However, these patterns, while 

identifiable, also display a non-negligible overlap of 

calcifications between the cusp regions, indicating shared 

occurrence rather than entirely distinct distributions. 
 

 

 

Figure 3: Exemplary visual comparison of clustering results 

of pseudo-circular volumetric calcification distributions using 

different feature extraction methods. 
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In Figure 4, the clustering results for WA-PCA and WT-PCA 

are shown for an analysis with nine clusters (number of 

patients: #). Clustering into nine groups reveals that the 

distributions can be further subdivided into clusters with 

distinct differences in the location of calcifications. Two 

clusters, C4 and C6, were identified, bridging cusp regions. C4 

exhibits calcifications across both the RCC and LCC regions, 

while C6 shows calcifications spanning NCC and RCC. The 

WA-PCA method resulted in more evenly distributed patient 

numbers across clusters compared to the WT-PCA method, 

which exhibited greater variability in cluster sizes. 

 
Figure 4: Exemplary visual comparison of clustering results with 

nine cluster based on pseudo-circular volumetric calcification 

distributions using WA-PCA and WT-PCA. 
 

This study demonstrates that distinct patterns of calcifications 

can be grouped into clusters sharing similar CVn distributions 

in the region of the native aortic valve. The largest clusters 

identified exhibited a higher amount of calcification in the 

NCC, a finding consistent with previous clinical investigations 

[12,13]. Based on the presented clustering results, future 

research should investigate whether calcification clusters 

impact clinical outcome post TAVR, such as paravalvular 

leakage or thrombosis. Understanding whether these clusters 

provide meaningful prognostic information could contribute to 

stronger mechanistic insights, which remains insufficiently 

explored in clinical studies but is discussed [13]. We identified 

subgroups of calcification patterns that exhibit characteristics 

of functional bicuspid valves. Further investigation is 

warranted to assess the safety of current TAVR devices for 

such cases and to evaluation of bicuspid-adapted TAVR 

devices may be necessary. The clustering methods and results 

presented in this study serve as a baseline for future analyses 

assessing the impact of calcification patterns on clinical 

outcomes and TAVR device optimization. Furthermore, these 

results provide a reference, enabling the validation of synthetic 

calcification generators within the concept of virtual TAVR 

cohorts. Finally, the findings of this study should be cross-

validated using data from other clinical centers to ensure 

generalizability and robustness. 
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