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Abstract: Minimally invasive transcatheter aortic valve
replacement (TAVR) has become the preferred procedure for
patients with aortic valve stenosis or insufficiency who are at
high risk for conventional open-heart surgery. The favorable
clinical outcomes observed in high-risk patients have led to an
expansion of the eligible cohort, now including intermediate-
and low-risk patients. A critical aspect of advancing TAVR
procedures lies in preoperative simulation, which in future can
integrate patient-specific in-silico deployment simulations and
post-deployment fluid mechanics assessments. In light of the
aforementioned context, this study investigates the volumetric
distribution of calcifications in the aortic cusps of a TAVR
patient population and explores whether naturally occurring
clusters should be considered in in-silico simulations. We
analyze clustering results based on different methods for
feature extraction, using circular measured volumetric
calcification distributions. The clustering method applied is
hierarchical clustering. Our findings identify distinct
calcification clusters across different feature extraction
methods. The Framework can be incorporated into in-silico
trials and clinical studies assessing the impact of calcification

patterns on clinical outcomes and TAVR device optimization.
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1 Introduction

The minimally invasive implantation of transcatheter aortic

valve replacement (TAVR) has become the standard
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procedure for patients with severe aortic valve stenosis or
insufficiency who are considered high-risk candidates for open
surgery. Given its promising clinical outcomes, there is
ongoing debate about expanding TAVR eligibility to include
patients with intermediate or even low surgical risk. [1]. To
further enhance clinical outcomes, preoperative TAVR
planning approaches—including patient-specific in-silico
deployment simulations and post-deployment flow analyses—
are being actively explored. Numerical simulation models for
TAVR deployment in patient-specific geometries have already
been developed and applied, as demonstrated in studies such
as [2].
development of virtual cohorts using shape modeling

Certain research groups are investigating the

techniques to adopt a more comprehensive, population-based
approach, allowing for the generation of synthetic patient
geometries. For instance, Verstraeten et al. developed a shape
model of the aortic root of TAVR patients [3].

In this context, gaining deeper insights into the volumetric
calcification patterns of real clinical TAVR cohorts is
essential. More explicitly, ensuring a robust modeling
approach requires accurately capturing naturally occurring
calcification patterns, so they can be appropriately
incorporated into numerical modeling techniques.

In this study, we investigate whether distinct, naturally
occurring calcification patterns exist in TAVR patients and
whether these patterns can be grouped into meaningful
clusters. To achieve this, we present a cluster analysis that
explores different feature extraction methods, clusters circular
measured calcification volumes based on the extracted
features, and evaluate the resulting clusters using internal
cluster validation metrics and visual inspection. Among these
methods, we include Wasserstein-PCA for circular measures,
recently proposed by [4], which appears to be particularly
well-suited for this type of analysis.

Based on this calcification clustering framework and results,
we aim to establish a robust baseline for future analyses
focused on modeling realistic calcification patterns in virtual
cohorts. These cohorts can be integrated into in-silico
modeling frameworks to evaluate the impact of calcification
patterns on the TAVR procedure and subsequent clinical
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2 Material and methods

2.1 Data processing of calcified TAVR
populations

The cluster analysis is based on 96 post-operative TAVR CT
patient datasets provided by the Department of Cardiology at
the Rostock University Medical Center. The patient data are
uniform distributed between female and male patients, with an
average age of 86 £ 17 years. The reconstruction of the aortic
root and the calcifications was previously described in [5].
Variations in the aortic root within the population were
modelled using a shape model based on principal component
analysis (PCA). By combining this approach with a mapping
routine between a mean aortic root geometry and individual
patient anatomies, as described in [5], calcification volumes
were normalized (CVn) onto the mean aortic root. In this
study, we focus exclusively on calcifications in the region of
the aortic valve and root, specifically between the annulus and
the sinotubular junction (STJ). We propose investigating the
calcifications as a pseudo-circular volumetric distribution
spanning the aortic root in a circular manner, with the axis
aligned from proximal to distal locations, following the aortic
valve orientation. We refer to it as a "pseudo-circular
distribution" because the segmentation is not based on
equidistant points along the entire circle. Instead, the circle is
first divided into three segments corresponding to the three
cusps: the left coronary cusp (LCC), the right coronary cusp
(RCC), and the non-coronary cusp (NCC). Within each of
these three segments, equidistant points are placed along the
curve to further segment the calcifications and calculate their
volumes within these subdivisions, as illustrated in Figure 1.

this
understanding of the circular position of calcifications while

Using approach, we gain a more intuitive
accounting for the different sizes of the cusp regions. The
segmentation and cluster analysis were performed using
PyVista library within a custom Python script [6]. In this
analysis, eleven segments were used per cusp.
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In the following, the CVn distributions are represented on
a unit circle with equidistant segments described by the angle
¢. This should be kept in mind when interpreting the results
(see Figure 1 for an example). The pseudo-circular measured
CVn will hereafter be referred to simply as CVn.

2.2 Cluster analysis of calcified TAVR
populations

Based on CVn, we implemented a clustering routine, testing
five different feature extraction mechanisms, which will be
described in the following section. Using the extracted
features, we applied a clustering algorithm to identify distinct
calcification patterns.

2.2.1 Feature extraction on the calc volume
distribution

As one of the feature extraction methods we implemented a
PCA on the raw data consisting of CVn ordered according to
¢ as input. The second feature extraction method is the
Elliptical Fourier Descriptor (EFD), introduced by [7]. This
method describes the closed curve formed by the CVn
distribution using Fourier sine and cosine functions. The level
of detail captured in the shape representation is controlled by
the parameter h, which determines the amount of higher-
frequency this  study
h =35, 10, and 20 were analyzed. The python library spatial-
efd was used [8]. The third method is a wavelet transform-
based feature extraction technique, in which CVn is

components  included. In

decomposed into a series of approximation coefficients using
basis functions [9]. We employed the Haar wavelet transform,
by using PyWavelets [10], and used 100 coefficients to
describe CVn distribution and applied PCA analysis on this
features (WT-PCA). Furthermore, we tested a recently
published method, the so called Wasserstein-PCA (WA-PCA)
on circular domains [4]. This approach operates in the
Wasserstein space of probability measures supported on the
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Figure 1: (A) Exemplary calcified aortic roots of TAVR patients, colored by radial angle ¢, (B) and data processing routine extracting the

circular measured pseudo-circular calcification volume distribution.
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unit circle, combined with PCA. For all PCA analyses, we
retained components that explain > 95 % of the variance in the
input data.

2.2.2 Cluster analysis

We performed agglomerative hierarchical clustering using
Ward's linkage method, by means of the Scikit-learn python
module [11]. To determine the optimal number of clusters, we
tested different cluster numbers and computed internal cluster
evaluation metrics, including the silhouette score and
Calinski-Harabasz index (CHI). To assess the robustness and
generalizability of the clustering process, we randomly
sampled a subset of the cohort (80 %), which was included in
the clustering process. This procedure was repeated five times,

and we averaged the computed internal evaluation metrics.

3 Results and Discussion

3.1 Internal evaluation of the
calcification cluster

For each clustering result obtained from all feature extraction
methods, the silhouette score and CHI were visualized across
varying cluster numbers. These values were computed using
the hierarchical clustering method and are presented with a
banded standard deviation (scaled by 0.5 for improved
visualization) based on a random train-test split of the CVn
data. To determine the optimal number of clusters, we aimed
to identify configurations with more than two clusters. A
distinct and meaningful cluster number was identified for the
EFD method, both with and without PCA applied to the
features. The results for different harmonic choices were
highly similar, all indicating an optimal cluster number of four,
as suggested by both the silhouette score and CHI. Applying
PCA directly to the raw data resulted in a rapid decline in both
the silhouette score and CHI, with an optimal cluster number
of three selected for visualization. For the WT feature
extraction method, the highest silhouette score for number of
cluster > 2 was observed at five cluster when combined with
PCA. Clustering based on the raw WT features showed a
gradual decrease in silhouette scores up to ten cluster. Finally,
clustering based on Wasserstein PCA (WA-PCA) extracted
features exhibited relatively small variations in silhouette
scores as the cluster number increased. However, a slight
inflection point was observed at nine cluster, while both CHI
and the silhouette score plot indicated an optimal cluster
number of three.
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Figure 2: Internal cluster evaluation metrics computed for
different cluster numbers using various feature extraction
methods in clustering pseudo-circular volumetric calcification
distributions. From left to right: Silhouette score and Calinski-
Harabasz index (CHI).

3.2 Visual calcification cluster
evaluation

The most distinct and meaningful clusters, based on the
optimal cluster numbers discussed in Section 3.1, are
visualized below for WA-PCA, PCA on raw data, EFD-PCA,
and WT-PCA. For each cluster, the median along with the 25th
and 75th percentiles are shown. The number of patients in each
cluster is annotated. To facilitate interpretation, clusters with
visually similar characteristics across different feature
selection methods have been grouped together. The most
visually identifiable cluster, C1, is characterized by a high
CVn in the NCC region, accompanied by a smaller but
relatively high amount of CVn in the RCC and LCC regions
compared to other clusters. This finding holds for all feature
selection methods. In EFD-PCA, this cluster is further
subdivided, with one sub cluster exhibiting calcifications
localized solely in the NCC region. WA-PCA emphasizes the
identification of concentrated CVn corresponding to specific
cusp regions, with C2 exhibiting higher CVn in RCC and C3
showing higher CVn in LCC. However, these patterns, while
identifiable,
calcifications between the cusp regions, indicating shared

also display a non-negligible overlap of

occurrence rather than entirely distinct distributions.
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Figure 3: Exemplary visual comparison of clustering results
of pseudo-circular volumetric calcification distributions using
different feature extraction methods.
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In Figure 4, the clustering results for WA-PCA and WT-PCA
are shown for an analysis with nine clusters (number of
patients: #). Clustering into nine groups reveals that the
distributions can be further subdivided into clusters with
distinct differences in the location of calcifications. Two
clusters, C4 and C6, were identified, bridging cusp regions. C4
exhibits calcifications across both the RCC and LCC regions,
while C6 shows calcifications spanning NCC and RCC. The
WA-PCA method resulted in more evenly distributed patient
numbers across clusters compared to the WT-PCA method,
which exhibited greater variability in cluster sizes.
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Figure 4: Exemplary visual comparison of clustering results with
nine cluster based on pseudo-circular volumetric calcification
distributions using WA-PCA and WT-PCA.

This study demonstrates that distinct patterns of calcifications
can be grouped into clusters sharing similar CVn distributions
in the region of the native aortic valve. The largest clusters
identified exhibited a higher amount of calcification in the
NCC, a finding consistent with previous clinical investigations
[12,13]. Based on the presented clustering results, future
research should investigate whether calcification clusters
impact clinical outcome post TAVR, such as paravalvular
leakage or thrombosis. Understanding whether these clusters
provide meaningful prognostic information could contribute to
stronger mechanistic insights, which remains insufficiently
explored in clinical studies but is discussed [13]. We identified
subgroups of calcification patterns that exhibit characteristics
of functional bicuspid valves. Further investigation is
warranted to assess the safety of current TAVR devices for
such cases and to evaluation of bicuspid-adapted TAVR
devices may be necessary. The clustering methods and results
presented in this study serve as a baseline for future analyses
assessing the impact of calcification patterns on clinical
outcomes and TAVR device optimization. Furthermore, these
results provide a reference, enabling the validation of synthetic
calcification generators within the concept of virtual TAVR
cohorts. Finally, the findings of this study should be cross-
validated using data from other clinical centers to ensure
generalizability and robustness.
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