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Abstract: Advanced technologies help in the analysis of the 

surface electromyogram (sEMG) signals to recognize the 

pattern of the gait and provides the mechanism to control the 

prosthetics. EMG signals used for the diagnosis of 

neuromuscular diseases, human-machine interaction as they 

reflect human intensions. In this study an attempt has been 

made with novel approach for the classification of walking 

activity using a hybrid CNN-LSTM model based on the sEMG 

and goniometer (GM) signals from healthy and knee abnormal 

subjects. This study utilizes the dataset from UC Irvine 

Machine Learning Repository (UCI) on lower limb sEMG 

signals of 11 normal and 11 abnormal subjects with knee 

abnormality while performing the walking activity. A hybrid 

CNN-LSTM effectively captures the temporal and spatial 

features from sEMG signals and provides the average 

accuracy and average precision of 82.10%, 72.69%. This 

performance suggests that the proposed model successfully 

classifies the sEMG signals during walking and thereby 

leading to more precise control of the prosthetics using the 

hybrid model.  
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1 Introduction 

In rehabilitation, gait analysis is important since it 

provides the information about the lower limb movement and 

the walking pattern. Gait also enables the clinicians to give 

optimised treatment which results in the good outcomes. Limb 

amputation and injury like osteoarthritis, meniscus and 

anterior cruciate ligament affects the movement and the 

physical functioning across the world [1] [2]. Assistive devices 

like passive prosthesis to enhance or compensate the function 

by particularly tracking the gait. They only provide the support 

to the beneficiary and doesn’t have any sensory feedback [3] 

[4] [5]. Gait analysis act as diagnostic tool [6] for the design 

of the powered prostheses which achieves the optimal 

performance and also helps in the classification of the 

movement [7]. Human gait is the coordinated complex cyclic 

interaction of muscles, nervous system and the bone. 

Acquisition of the EMG signals can be either Invasive or non-

invasive technique from the muscles and non-invasive 

techniques are far better since there is no supervision of the 

clinician are required [8]. Applications of the upper limb using 

the sEMg is focused more on the past years compared to the 

lower limb. The acquisition of the sEMG signals from the 

lower extremity is complex due to the neuromuscular activity, 

physiological and anatomical properties and the numerous 

motor unit contribution at a time. Human activities such as 

sitting, standing, walking, staircase ascent, staircase descent 

and squatting provides the extremity information. 

Neuromuscular and skeletal disorder are diagnosed by 

evaluating and classifying by the movement of the leg [9] [10]. 

Previous studies have deployed a transfer learning – based 

LRCN model on the UCI dataset to classify and predict the 

joint angles of the lower extremity activities [11]. The authors 

in [12] used Mivrosoft Kinect V2 sensor for the acquisition of 

the different human activities and used hybrid deep learning 

models for the classification of the activity. Myopathy and 

neuropathy classification based on neural network is proposed 

in [13]. Six different movements of lower limb are classified 

using Machine Learning (ML) and worked on identifying the 

knee abnormality [14] [15].  In [16] a hybrid model of wavelet 

Denoising – Ensemble Empirical Mode Decomposition (WD 

- EEMD) is proposed for the recognition of the activity with 

and without knee abnormality. Another study [17] proposes a 

hybrid ensemble deep learning model for the classifying the 

movement of the lower extremity during the different 

activities.  

In this study, an attempt has been made to classify the 

walking pattern using the hybrid CNN-LSTM model using the 

sEMG data from the quadriceps and the hamstrings. 
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2 Materials and Methods 

2.1 Participants 

The dataset [18] comprises sEMG signals collected from 

22 male volunteers aged 18 and older, including 11 fit 

individuals and 11 with knee disorders such as sciatica, 

meniscal rupture, and ACL injury. The data acquisition setup 

utilized four sEMG channels and one goniometer 

measurement channel, recorded with Biometrics Ltd. and 

Datalog MWX8, while knee joint angles were captured using 

an SG150B goniometer.  

2.2 Experimental Protocol 

sEMG electrodes were placed on the rectus femoris 

(RF), semitendinosus (ST), vastus medialis (VM), and biceps 

femoris (BF) muscles, maintaining a 20 mm spacing and an 

input impedance greater than 10 MΩ. The signals were 

sampled at 1000 Hz and filtered within a range of 20–460 Hz. 

Participants performed three key activities: standing with knee 

flexion, walking on ground level, and sitting with knee 

extension. To ensure consistency, the sEMG signals 

underwent standardization to achieve zero mean and unit 

variance. Additionally, the ADASYN algorithm was applied 

to address class imbalance by generating synthetic samples for 

underrepresented classes.  

2.3 Data Preparation 

The data was segmented into 256 milliseconds (ms) 

windows with a 64 ms overlap using a sliding window 

approach, allowing for detailed temporal analysis. For 

validation, a 3-fold cross-validation technique was employed 

to assess model performance. These preprocessing steps 

ensured high-quality data for subsequent feature extraction 

and classification tasks. 

2.4 Deep Learning Model 

The proposed methodology deploys a hybrid 

Convolutional Neural Network (CNN) and Long Short-Term 

Memory (LSTM) model to classify the walking pattern using 

sEMG signals. CNN component captures the spatial features 

and LSTM component extracts that help in the gait 

classification. 

ℎ𝑡
𝑙 = 𝑓(∑ 𝑤𝑖

𝑙 .  𝑥𝑡+𝑖
𝑙 + 𝑏𝑙𝑘−1

𝑖=0 )                                               (1) 

EMG signals collected undergoes the Z-score normalization 

and the spatial patterns from EMG signals are extracted using 

1 Dimensional (1D) is given by equation (1). ℎ𝑡
𝑙  represents the 

feature at position t in the layer l, 𝑤𝑖
𝑙  are kernel weights, kernel 

size. Further the temporal features are extracted by LSTM 

layers, and it maintains a memory cell and hidden state which 

helps in refining the temporal representations. For the binary 

classification the output of the LSTM is given to the fully 

connected dense layer follow through a sigmoid activation. 

This model uses binary cross-entropy to optimize the loss, and 

it is defined in equation 2. 

𝐿 =  −
1

𝑁
 ∑ [𝑦𝑖 log 𝑦 𝑖 + (1 − 𝑦𝑖) log(1 − 𝑦̂𝑖)]

𝑁
𝑖=1                  (2) 

𝑦𝑖 is the actual label, 𝑦 
𝑖
is the predicted label. The architectural 

of the proposed CNN-LSTM model is shown in Fig. 2. 

3 Results and discussion 

The performance of the CNN-LSTM model for the 

evaluation the normal and abnormal walking pattern using the 

sEMG is proposed. The model achieves the accuracy of 

82.10% in recognising the walking abnormalities. 

3.1 Performance Analysis 

The result of the classification attains the precision of 

82.72% and recall of 98.58% for the walking in normal 

subjects and results in 89.96% F1-score. With the high recall 

value provides that model is with minimal of the false positives 

and highly sensitive in detecting the normal walking pattern. 

Similarly for the abnormal walking it achieves the precision of 

72.66% followed by recall of 80.66% that correspondingly 

yields the F1-score of 74.24% can be illustrated in Table 1. 

The precision is comparatively low than normal walking as 

some abnormal patterns may have been misclassified because 

of the overlapping of the gait features in the sEMG signals. 

3.2 Feature Representation  

         CNN layers effectively capture the spatial patterns from 

the sEMG signals that can be illustrated from the Figure 1A, 

1B in which the EMG signals variations for the different 

muscle channel can be visualised. LSTM layer captures the 

temporal (time) dependencies in gait as the same can be seen 

in Figure 2 architecture diagram. The batch normalisation and 

max pooling layer reduces the overfitting, improve feature 

stability. 
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A)                                                                                 B)  

Normal walking muscle activation is periodic while in the 

abnormal walking exhibits the inconsistent patterns of the 

activation across the different muscle channels. The spatial 

difference is captured by the CNN layers and LSTM layers. 

Figure 2: Architectural diagram of the proposed CNN-LSTM model 

Figure 1: A) Representative signal of quadriceps and Hamstring muscle for normal walking pattern B) Representative signal of quadriceps 
and Hamstring muscle for abnormal walking pattern 
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Table 1: Performance metrics of CNN-LSTM model 
 

Class Precision (%) Recall (%) F1-Score (%) 

Normal 82.72 98.58 89.96 

Abnormal 72.66 80.66 74.24 

Accuracy (%)   - - 82.10 

 

Overall, the model achieves the strong performance and 

in the precision of abnormal walking needs some 

improvement. Further the misclassification is because in 

certain conditions it has the similar walking conditions. 

Despite that models paves way for the improves diagnosis and 

provide the strong potential for application of real-time gait 

analysis. 

4 Conclusion 

This study explores the use of the hybrid CNN -LSTM 

model for classifying normal and abnormal walking patterns. 

The findings highlight the effectiveness of the CNN-LSTM 

model in classifying the gait pattern by attaining an accuracy 

of 82.10%. Utilizing the hybrid model leverages the CNN 

layers and LSTM layers for the spatial feature extraction and 

temporal sequence modelling makes effective for 

classification based on muscle activity. Furthermore, studies 

could explore the different models and feature extraction 

technique to support the classification and the performance of 

the model. Larger dataset with different gait abnormalities can 

further enhance the model robustness. 
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