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Abstract: This paper introduces a framework for estima-
tion of lower-leg biomechanical parameters (inertia, damp-
ing, stiffness) using a passive exoskeleton with embedded
IMUs and position encoders. By combining Kalman filtering
with sequential least squares optimization, we achieve subject-
specific identification during natural movement without mo-
tion capture systems.
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1 Introduction

Assistive exoskeletons show increasing potential in healthcare
applications, particularly for mobility support in aging pop-
ulations. While active exoskeletons can provide personalized
gait assistance through torque-controlled actuators, their ef-
fectiveness fundamentally depends on accurate biomechani-
cal parameters of the user’s limbs - including joint inertia,
damping coefficients, and segmental stiffness. Current param-
eter identification methods face critical limitations in practical
deployment scenarios. In multi-user environments like retire-
ment homes, where exoskeleton operators frequently change,
traditional approaches requiring elaborate measurement sce-
narios are not feasible. If the exoskeleton is an actively pow-
ered exoskeleton, it is advantageous to have precise knowledge
of the mechanical properties in order to optimize the support
provided by the exoskeleton. Such parameters can be the in-
ertia and stiffness of the joints of the person wearing the ex-
oskeleton. If the user of the exoskeleton is constantly chang-
ing, it is not possible to perform complex and expensive mea-
surements to calibrate the exoskeleton to the user. Therefore,
this paper presents a simple and fast method for estimating var-
ious human limb parameters using an exoskeleton. To make a
first evaluation of the method, a Parameter estimation is done
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for the lower leg. In this study, the movement is imposed only
through rotation of the knee joint.

1.1 Related Work

In the literature the estimation of human lower limb parame-
ters is achieved in several ways. One prominent way to deter-
mine parameters of the knee, such as stiffness and damping, is
by using an optical tracking system in combination with sen-
sors such as electromyography (EMG) or force sensors [1].
The optical system is used to measure the position of the hu-
man limb, while the EMG or force sensors can be used to es-
timate the torque applied to the observed joint. Therefore a
model of the muscles and the joint as in [2, 4] is needed. Oth-
erwise, an inverse dynamics approach can be used, where the
relationship between ground reaction forces and joint acceler-
ations is used to determine the exerted inertia. Another way to
determine the applied torque on the joint is to use functional
electrostimulation (FES) to control the muscles [4]. In an ac-
tive exoskeleton, the joint torque can also be applied by the
actuators when the leg muscles are relaxed. Due to the lack of
methods that include only an exoskeleton frame with sensors,
we present a novel approach where several parameters of the
human lower leg, such as mass and stiffness, can be estimated
using only the sensors on the exoskeleton and prior knowledge
from human anatomy.

2 Methods

The following section describes the overall applied work-
flow. This includes accquisition of the motion data, data post-
processing and the usage of an optimization algorithm to find
a parameter set that can reprdoduce the recorded motion. First,
the measurement of the angle ¢, angular velocity ¢ and angu-
lar acceleration ¢ is done on a Arduino Nano 33 IoT in com-
bination with the onboard Inertia Measurement Unit (IMU)
LSM6DS3 and an angle encoder of type AS5600. The used
exoskeleton segment is part of a newly built exoskeleton at
the Institute for Medical Information Technology (MEDIT).
The exoskeleton together with the used sensory components is
shown in Figure 1.
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Fig. 1: Exoskeleton with components for data aquisition

In addition to the used sensors, the exoskeleton consists
mainly of an additive manufactured PETG structure that con-
nects the thight and shin. Moreover, a flexible element made of
TPU is used to compensate for deviations of the knee joint in
relation to the hinge joint of the exoskeleton. It can also com-
pensate for misalignment between the exoskeleton and the hu-
man to still be comfortable. In addition to the main structure,
two adjustable cuffs connect the exoskeleton to the human at
the thigh and shin. Using the Arduino and a Kalman filter, ¢, (i),
¢ are acquired. Then the data is sent to a stationary computer
using a CAN bus network. On the computer, the recorded data
is filtered using a moving average filter and then clipped to
extract only the useful part of the graph. It is then fed to an
optimization algorithm to obtain the mass (m) and inertia (J)
of the lower leg. Additionally, the distance from the joint to
the center of mass of the shin (1), the joint stiffness (¢), and the
damping (d) are calculated. The complete workflow is shown
in Figure 2.

2.1 Data Aquisition

To reduce noise in the measurement, a Kalman filter on the Ar-
duino is applied based on [5]. The filter uses finite differences
to relate angle ¢, angular velocity ¢ and acceleration ¢, with
the system matrix A defining their correlation:

1 At 0.5A#
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¢
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Fig. 2: Workflow Diagramm

Here, At represents the sample time on the embedded system,
which is set to 0.01sec. The filter corrects predicted states us-
ing both measured states and diagonal weighting matrices Q
and R to suppress noise. The Kalman filter serves, as a noise-
rejecting integrator, enabling parameter estimation for subse-
quent physical modeling.

2.2 Data Postprocessing

The motion, we want to record, is a simple up and down mo-
tion. The movement starts with the lower leg being up at 0°,
going down to about —90° and back up again, as shown in
Figure 2. The recorded profiles are then filtered with a mov-
ing average filter to obtain only the characteristic trajectory
of the motion [6]. This is especially necessary for the accel-
eration because the leg muscles tend to twitch when moving
slowly and concentrating on a constant speed.

N-1
Ty(i) =3 3 6l +)) ©)
§=0
The variable T¢ is the filtered trajectory of ¢ in the window of
size h. This procedure is applied successively for all recorded
values N of ¢ and corresponding ()2.5, ¢ In addition, the regions,
where no significant motion is recorded, are clipped using the
motion criterion ¢ > 20 °s~ 1. The frequency f of the driving
torque can also be estimated by half the time (7') that the leg
needs to return to its initial position.
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2.3 Prior Knowledge from Human
Anatomy

To obtain feasable starting values for the optimization and for
comparison, values from literature are used. To get the ex-
pected mass for the lower leg, the mass distribution data based
on the analysis from [3] is used. The distribution is relative to
the total body weight m;014;:

(&)

Mshin = 0.05 - Myo1a;

(6)

Based on the relative mass and the position of the center of
mass (COM) of feet and shin (dg, dg) in the knee joint coor-
dinate frame, the distance (/) between the knee joint and the
combined COM of shin and feet can be calculated [7].

Mfeet = 0.02 - myppal

dp - 0.02 +dg - 0.05
0.02 + 0.05

(7

l=|dcomll; = H

2
To estimate the inertia () of the lower leg, a simplification of
the shin as a capsule is performed, where the effect of the foot
is considered negligible. With the capsule oriented so that the
z-axis of the moving knee joint coordinate system points along
the capsules central axis, the corresponding inertia (6) can be
calculated as follows:

2 r2,
0 =p - Veylinder - (751121" + Lzm>
2

2y 12, Sy - .
+ 0 Viphere - ( SShm + ng + Shmg Tshm) )

With the shin radius (r4p;,) based on [8], the capsule can be
separated into a cylindrical and a spherical part [9]. The den-
sity p can be calculated from the shin mass and the volume of
the capsule. The length I}, is the length of the cylindrical
part of the capsule, which is the difference of the shin length
and the shin diameter. For the stiffness and damping, as well
as for the torque applied to the knee joint, reference values
from the literature are used. Based on Lyu et al. the stiffness
(c) and damping (d) of the knee joint are about 1.6N m rad !
and 28.8N mrad ~! s~ ! for a healthy young male [4]. Accord-
ing to [9], the human torque on the knee joint can reach up to
300N m for isometric knee extension.

2.4 Optimization Algorithm

In order to estimate parameters for the human shin, using a Se-
quential Least Squares Quadratic Programming (SLSQP) al-
gorithm, a cost function must be formulated. Therefore, we
derive the dynamic model of the lower leg using a pendulum

model. The dynamic of the exoskeleton made completly out
plastic, is considered neglectable.

% (Thuman —mlg-cos(@) —c-¢—d- d)) ()

Thuman = { ) (10)

A sinusoidal torque (7hyman) 1S assumed, which changes its
sign after half of the measured period. The signs and the pas-

b=

. . T
—7-sin(2xf-t), ift< 7T,
T-sin (27f - t), ift > 5

sive forces can be derived from Figure 2, where g is the grav-
itational acceleration with 9.81ms~2. Based on the equation
9 we can formulate the cost function to minimize the error
between the measured angle T¢, and the computed angle ’f‘¢.
We get the simulated angle from the simulated acceleration via
forth order Runge-Kutta integration.
. ~ 2

min <HT¢—T¢(P)H2+)\- |\Pezp—P|\§) a1
The variable P is the parameter vector, containing P =
(m, J,1,d, c, 7). We can also push the optimization towards the
expected values from anatomy, by using a regularisation that
punishes the deviation between the expected parameter vector
Pezp and the computed P. The influence on the optimization
can be regulated by use of the parameter A. In addition we can
formulate the inequality constraint:

J—mi?>0withJ=mi®>+0 (12)

Additionaly, we get the boundary conditions for P based on
the findings from section 2.3.

Pc ([2; 6],[0.15; 1], [0.15; 0.6], [0; 60], [0; 4], [—250; 250])
(13)

3 Experiment

To validate the proposed procedure, the exoskeleton is worn by
a young male with a body weight of 77kg. To record the data,
the subject sits on a chair with the leg fully extended. The leg
is moved as described in chapter 2.2. Based on body weight,
shin radius and length for an average male with a height of
1.8m the expected parameter vector is as follows, where 7 is

unknown.
Pesp = (5.39kg, 0.35kg m?, 0.2461m,
30N mrad ! 571,2Nmrad71,7) (14)

The estimated average parameter vector from two movement
cycles is:

P = (4.929kg, 0.736kg m?, 0.221m,
0.162Nmrad 's™!,2.127Nmrad ™}, —5.39Nm) (15)
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Fig. 3: Comparison of measured and simulated (dashed line)
angle and angular velocity

The trajectorie for the measured angle and angular velocity of
the first movement is shown in Figure 3. The simulation ex-
hibits a significant convergence between the computed angular
trajectory and the measured data, although the angular velocity
is approximated with lower accuracy. The negative amplitude
of the estimated joint torque indicates that the human gener-
ated damping counteracts gravity induced movement. Further-
more, the estimates for mass, stiffness, and knee joint distance
closely align with literature benchmarks, whereas the value for
inertia is higher than expected and the damping value is nearly
neglectable. This discrepancy can be attributed to the existence
of multiple parameter sets that reproduce the measured move-
ment, thereby allowing for parameter variability within a cer-
tain range.

4 Conclusion and Outlook

This study presents a method for estimating human inertia,
mass, damping, stiffness and peak amplitude using a sensor-
equipped passive exoskeleton combined with an optimization
algorithm that uses literature and anatomical reference values.
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Although the measured joint angle is accurately tracked, devi-
ations in its derivatives and the occurrence of multiple param-
eter sets indicate that the current optimization requires further
refinement. Additionally, misalignment between the exoskele-
ton and the human leg causes the measured angle to be slightly
below zero at full extension, which should be incorporated in
future studies. Further developments include integrating actu-
ators and an onboard computing unit to enable real-time opti-
mization and optimized control.
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