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Abstract:
This study presents a novel approach to augment physiothera-
peutic exercise datasets by synthesizing realistic Inertial Mea-
surement Unit (IMU) data. The augmented dataset is used to
improve the performance of a deep learning based exercise
evaluation system. The approach is demonstrated using the
deep squat exercise from the Functional Movement Screening
(FMS) protocol. By integrating musculoskeletal simulation
and leveraging knowledge of potential movement errors based
on FMS evaluation criteria, we aim to produce synthetic data
that closely mimics human movement. Our evaluation demon-
strates that training a combination of a Convolutional Neu-
ral Network with a Long-Short-Term-Network (CNN-LSTM)
with both real and synthesized data significantly improves the
model’s performance, especially in generalizing to unknown
subjects. However, limitations such as the approach’s speci-
ficity to the deep squat exercise suggest the need for a more
adaptable method. Future work will focus on refining the syn-
thesis process to ensure a broader applicability to various exer-
cises. This research contributes to advancing automated phys-
iotherapeutic exercise evaluation, highlighting the importance
of synthetic data in achieving better performing and more gen-
eralizable models.
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1 Introduction

Many physiotherapy treatments require patients to perform
specific exercises regularly and accurately at home, which is
crucial for their recovery [1]. However, ensuring proper exer-
cise execution in an unsupervised environment is challenging,
as patients receive no feedback on their form. Incorrect execu-
tion can delay recovery and, in the worst case, cause additional
injuries [2].
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To address this issue, we have developed a deep learn-
ing framework capable of automatically evaluating physiother-
apy exercises utilizing Inertial Measurement Unit (IMU) data,
and recorded a suitable dataset to train this algorithm [3]. Our
approach achieved competitive results, but we aim to further
improve performance by increasing the quantity and diversity
of the dataset. However, collecting and labeling suitable data
is costly, time-consuming, and at times unfeasible due to the
unavailability of subjects with specific movement patterns. In
order to generate new examples of human motion with rea-
sonable effort, computer based simulation methods can be uti-
lized. In this context the use of musculoskeletal models is par-
ticularly advantageous, as they ensure the generated motion
adheres to human movement constraints.

Renani et al. use musculoskeletal models to generate syn-
thetic IMU data to train a Neural Network on joint angle pre-
diction during walking [4]. Their method uses motion capture
data mapped to a musculoskeletal model to compute and sub-
sequently augment joint kinematics, thereby generating IMU
data from the modified kinematics. However, this approach re-
quires motion capture data of the selected movement, which
is expensive to obtain. In addition, the joint angles are syn-
thesized independently rather than in relation to another. This
limitation could impact the adaptability of the method to com-
plex exercises where the dependency between the individual
joint angles must be considered, potentially resulting in exam-
ples that do not align with the original exercise.

These kinematic dependencies were considered by
Dorschky et al., who generated synthesized IMU data to train a
Neural Network on predicting sagittal plane joint angles, mo-
ments and ground reaction forces during walking [5]. They
approached the generation of movement pattern as an opti-
mal control problem, where new movement sequences are
created by prescribing random trajectories to the individual
body segments. These trajectories are drawn from distribu-
tions, which are created from an existing walking IMU dataset.
However, this method requires considerable computational ef-
fort, to solve the optimization problem. Furthermore, the ran-
dom creation of trajectories may result in infrequent genera-
tion of movement sequences that deviate considerably from
the mean of the underlying dataset. Especially, these atypi-
cal sequences could be important for enhancing the diversity
within the dataset.
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Building on previous work, we propose a synthesis ap-
proach adapted to the domain of physiotherapeutic movement
exercises. This approach is based on a musculoskeletal simu-
lation and enables the augmentation of an existing dataset by
synthesizing diverse and realistic movements. In addition to
established methods, we aim to use existing knowledge about
common movement variations, to ensure a meaningful addi-
tion to the variance of the dataset. Using the deep squat exer-
cise from the FMS, we will investigate how the performance
of a Neural Network tasked with the evaluation of movement
exercises improves, when trained with real and synthetic data.
Our approach focuses on the following key aspects:
– Data Augmentation of an existing dataset by synthesizing

physiotherapeutic movement exercises using exclusively
IMU data in combination with a musculoskeletal simula-
tion, reducing computational cost as much as possible.

– Targeted variation of relevant movement aspects, to en-
hance the diversity within the dataset.

– Automatic labeling of synthetically generated movement
patterns for exercise evaluation tasks.

2 Materials and Methods

The synthesization approach is demonstrated using an exist-
ing dataset of squatting movements (see chapter 2.1). Initially,
segment orientations are computed from raw IMU data (ac-
celeration, gyroscope), which are subsequently used to control
the movement of a musculoskeletal model (see chapter 2.2).
This movement is systematically varied during the synthesis
process (see chapter 2.3) and subsequently automatically eval-
uated (see chapter 2.4). Finally, chapter 2.5 outlines the Neural
Network architecture, while chapter 2.6 details the use of syn-
thesized data for the training of the Neural Network.

2.1 Dataset

The synthesization method is demonstrated using the deep
squat movement pattern, which is part of the Functional Move-
ment Screening (FMS) program [6]. Each movement within
the FMS protocol, is evaluated based on a set of defined perfor-
mance criteria. These criteria are essentially binary, meaning
that for a given exercise performance, each criterion is either
met or not met. The FMS employs a decision tree to derive the
final assessment based on the fulfillment status of these crite-
ria. The scoring system ranges from 3 (optimal execution) to 1
(fundamentally flawed execution). Detailed definitions of the
individual criteria and their impact on the scoring can be found
in [6].

For this publication we use IMU data collected by Spilz
et al. [3], which includes approximately 600 repetitions from
18 subjects of the described deep squat movement. This data
was recorded using 17 IMUs distributed on the subjects body.
The IMU data has been converted into a standardized coordi-
nate system to ensure consistency across measurements. For a
detailed description of this process and the dataset see Spilz et
al. [3].

2.2 Musculoskeletal simulation

The used musculoskeletal simulation is developed in Open-
Sim (version 4.3), an open source software tool for simulating
and analyzing human movement [7]. We utilized the full-body
musculoskeletal model by Rajagopal et al. [8], which includes
detailed formulations of the upper and lower extremities as
well as a simplified torso.

To transfer the recorded movement to the model, first the
orientations of the individual IMUs were calculated using a
Madgwick Orientation Filter (beta=0.033) [9]. This filter uti-
lized data from the tri-axial accelerometers and gyroscopes.
Next, we used OpenSense [10], an open-source toolbox within
OpenSim, to map the generated orientations onto the skeletal
model.

2.3 Synthesization process

Our study’s synthesis approach manipulates the prescribed
movement of the musculoskeletal model to either meet or vio-
late specific evaluation criteria for the deep squat exercise. To
illustrate this process, we consider the "Femur below horizon-
tal" criteria as an example. It assesses whether the hip joint
descends below the knee at the squat’s lowest point.

For each criterion, we define a measurable evaluation pa-
rameter. In the current example, this parameter is the angle be-
tween the femur and the longitudinal axis. Based on the criteria
definition and anatomical thresholds, two distinct value ranges
are established for each evaluation parameter: one where the
criterion is fulfilled and one where it is not. Depending on
whether the criterion is to be met or not, a new value is sam-
pled uniformly from the corresponding range.

To adapt an existing movement to a drawn evaluation pa-
rameter value, the movement of the body segments involved is
transformed by scaling the joint angles so the desired value
is achieved. Care is taken to ensure that these changes do
not affect the movement of the remaining body segments and
thus influence other evaluation criteria. Applied to our exam-
ple, this implies that only the movement of the femur and the
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Fig. 1: Illustrative example of how the deep squat exercise is ad-
justed based on the FMS evaluation criterion "Femur below hori-
zontal" [6], which can be evaluated using the angle between the
femur and the longitudinal axis. The left image depicts an exam-
ple where the defined angle 𝑎1 is 80° at the squat’s lowest point,
adhering to the FMS criteria. Conversely, the right image displays
an example, where the femur is raised above the horizontal line
(𝑎2 = 150), thereby not meeting the FMS criterion.

tibia is adjusted. Two examples of the resulting movement are
shown in Figure 1.

This method allows us to use a recorded example to gener-
ate numerous variants of movements, which also differ in their
assigned label due to disparate combinations of fulfilled or vio-
lated evaluation criteria. Since the modified joint angles curves
are still applied to the musculoskeletal model, it can be ensured
that the biomechanical constraints are adhered to. The existing
dataset can be supplemented with the synthesized movements
through the extraction of segmental orientation over time, a
process readily facilitated by OpenSim.

Using this approach, a computing time of approx. 10 sec-
onds is required to synthesize a repetition (AMD Ryzen 5
3600X, Windows 10, no GPU acceleration).

2.4 Automatic evaluation

The synthesized movements must now be evaluated automati-
cally. For this purpose, the positions, orientations of individual
segments and joint angles are exported from the simulation in

OpenSim. Utilizing these parameters, it is possible to auto-
matically review the defined evaluation criteria and assign the
corresponding label to the repetition.

2.5 Neural Network architecture

In this study, we utilize a model architecture that combines
a Convolutional Neural Network (CNN) with a Long-Short-
Term-Network (LSTM), called CNN-LSTM, to derive and an-
alyze both the spatial and temporal features of the presented
data. Following the CNN and LSTM layers, dense layers are
integrated to classify the FMS rating. The detailed structure
and parameters of this model, including the rationale for the ar-
chitectural choices and the optimization process, are described
in detail in a previous publication by the authors [3].

The training dataset consists of individual repetitions of
the deep squat exercise, whereby each sample contains the ori-
entations of the IMUs represented as quaternions. These orien-
tations are organized in a 2D matrix that resembles an image,
with the quaternion components arranged as columns within
the matrix. A graphical explanation and further preprocessing
steps are provided in the publication mentioned [3].

2.6 Evaluation

We will now compare how the network’s performance varies
when trained with both real and synthetic data, as opposed
to real data only. To conduct this test, we generated a syn-
thetic dataset with 6000 repetitions which were automatically
labeled. For each of the three possible classes, 2000 synthetic
examples were generated. The performance was evaluated us-
ing the Leave-One-Subject-Out (LOSO) method, i.e. all real
repetitions of a given subject were removed from the training
dataset and used as the test dataset. In addition, all synthetic
repetitions based on examples from that subject were removed
from the training dataset. The data from the remaining sub-
jects was used for the training (80%) and validation (20 %)
dataset, stratified by label and subject. This procedure was re-
peated for each of the 18 subjects in the dataset. Only real
repetitions were used for the test dataset, while both real and
synthetic repetitions were used for the training and validation
dataset. The remaining training parameters are identical to the
procedure outlined in [3].

3 Results

This chapter presents the results of the performance evalua-
tion of the Neural Network when trained with both real and
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synthetic data, as opposed to real data only. We analyze the
results using the weighted / macro F1-score, as the datasets of
the individual LOSO splits feature notable class imbalances.

The performance evaluation results of the CNN-LSTM
network for the exercise evaluation classification task are pre-
sented in Table 1. The averaged performance metrics indicate
that using a combination of synthetic and real data enhances
the classification performance on both the test and the valida-
tion dataset. Moreover, the standard deviation of the perfor-
mance metrics suggests that training the network with both
synthetic and real data leads to more consistent results.

4 Discussion and Outlook

The observed improvement in model performance emphasizes
that the proposed approach, which uses existing knowledge
about potential movement variations, to synthesize more di-
verse and accurate datasets, is a promising research direction.
The results presented mark a first step in the development of
this approach. Further investigations are necessary to assess
the influence of the used method on the dataset and thus on the
training of the Neural Network. For example, it is essential to
investigate how the network performance changes depending
on the number of synthetic examples and the ratio of synthetic
to real examples in the training dataset.

Additionally, the current approach is tailored specifically
for the deep squat exercise. A lot of manual labor is needed
to implement the protocols to adjust the body position due to
evaluation criteria, to derive meaningful value ranges and to
implement an automatic labeling routine. It is essential to de-
velop a methodology that can be adapted to a random exercise
with a minimal amount of additional manual labor. An ideal
approach should be able to synthesize a wide range of motion
patterns from a minimal set of real repetitions, accurately cap-
turing the nuances of the movement across all possible labels.

In conclusion, the presented approach is a promising re-
search direction to improve the performance of Neural Net-

Tab. 1: Performance of the used CNN-LSTM on an exercise eval-
uation classification task with and without synthetic training data.
Mean and standard deviation are calculated from the results of the
18 LOSO splits

Dataset
Weighted-F1
test set
(mean ± std)

Macro-F1
validation set
(mean ± std)

real data 0.78 ± 0.35 0.92 ± 0.1

real +
synthesized data

0.89 ± 0.21 0.98 ± 0

works in exercise evaluation. However, future work must focus
on overcoming the approach’s exercise specificity. Developing
a more adaptable and universally applicable methodology will
be essential in advancing the field and maximizing the poten-
tial of Neural Networks for exercise evaluation.
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