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Abstract: Hyper-viscoelastic models have been used to
characterize large strains coupled with viscosity. In this study,
we aimed to model the urethral in-vivo biomechanics through
a hyper-viscoelastic implementation. First, we used isotropic
2-parameter Demiray model for identification of urethral tube
inflation after refining the values of quasistatic states.
Attempting the approach by Holzapfel et. al., the average ratio
of the elastic and dynamic modulus was computed to
determine the stress contribution of the viscoelastic branches.
The values of the parameters were determined after
constraining a constant Energy dissipation (generalized
maxwell) over range 1s to 100s. For the hyper-viscoelastic
comparison implementation, it was observed that the goodness
of fit criteria performs good for half of the samples (Adjusted
R2>0.95). In some samples, the model is limited to fit ‘S’ shape
curves but still performed well. The above identification
technique and the hyper-viscoelastic in-silico approaches
show that our approach fares sufficiently for the creep
response characterization of the urethra.

Keywords: Elastomers, Strain Sensing, Shape
characterization, biomechanics, lumen, hyper-viscoelastic.

1 Introduction

A high compliant inflatable intra-luminal sensor-actuator
system is currently under development at the research
institutes of Furtwangen University for application within
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urethra/artery [1]. This system will be used to identify tissue
biomechanics and geometrical properties in-vivo.

To enable realistic sensor-tissue simulations, it is first
essential to individually characterize the tissue biomechanics.
Hyperelastic models are widely used to characterize time-
invariant (quasistatic level) tissue behaviour parameters
defined by Delfino/Demiray [2]. More
phenomenological models such as Holzapfel-Gasser-Ogden
(HGO) [3], GOH model [4] etc. are available. Time varying
effects (viscosity) have also been modelled as standard linear

complex

models ,as hyper-viscoelastic approaches from HGO [5],
Fractional models [6] and others [7].

Urethra is a complex organ and has limited biomechanical
studies carried out in a constrained environment and with
certain approximations. It is the aim of this study to refine the
biomechanical data using simple fitting methods and further
apply a hyper-viscoelastic approach to capture both the
hyperelastic and viscous effects of the urethra.

2 Methods

The dataset for urethral tube inflation was utilized Cunnane
et.al. [8] In their experimental setup they applied a step
pressure profile to the urethral tube (post elongating to its pre-
excised axial prestretch) from 0 to 10 kPa in incremental steps
of 1 kPa while each step was held for around 300s. This was
performed to obtain the approximate static stretch levels of
urethral tube. They later performed histological assessment on
the samples to obtain the average thickness of tissues for each
sample.

The method is divided into multiple steps for inflation:

2.1) Use the Pressure v/s Diametric extension profile to
perform fitting by prediction of the ideal quasistatic
states.

2.2) Use the predicted quasi-static values for each sample to
identify the in-vivo hyperelastic model fit using 2
parameter Demiray model.

2.3) Calculate the average incremental modulus between the
static and dynamic inflation profile from Cunnane Dataset
[8] and use it to calculate the contribution of 3 generalized
maxwell branches for constant Energy dissipation ( with
procedure defined by HGO ) [5].
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2.4) Obtain the Pressure v/s Diametric extension data for the
in-silico  hyper-viscoelastic  approach  (Demiray+
generalized maxwell (HGO)) using the actual pressure
profile for each sample. Comparing the goodness of fit for
the experimental data and the in-silico simulations for the
above curve.

2.1 Optimization

It is well known that tissues have a dynamic range of
biomechanical properties. As time is generally a constraint to
perform in-vivo experiments, methods can be utilized to
optimize the data obtained. In the current case an exponential
function was deployed to fit the parameters along with
multistart algorithm to obtain a global minimum.
O=a, — (P *xay) * e~t/as

(M

The ‘ax’ are phenomenological parameters while Py is input
vessel pressure at time ‘t’. ai parameter as standalone would
provide the diameter ‘©@‘ when t=oo (quasistatic equilibrium
point), because the contribution of part with the exponent
arrives to value of ‘0’ . This equation is applied manually to
each 50 second range for each pressure step at its end (when
applied inflation pressure within urethral lumen was largely
constant and changes in diameter were of relatively slower rate
than the rest of the preceding part of step). The corresponding
value for the diameter at the hypothetical t=c0 was computed
for each incremental pressure step.

2.2 Demiray model fitting

Once the pressure v/s stretch values were obtained, a simple
exponential based hyperelastic model was used to fit the 11
points (0:1:10 kPa) for each tubular sample. The equation is
given by:

(A/B) % (eB/Z*(A§+l$+ﬂ.§—3) _ 1) (2)

Where A is stress parameter and B defines the shape of the
exponent. A9 A, 4, are the principle stretch components that
were obtained by simple calculations. A and B parameters
were identified for each of the samples with assumption of
tissue incompressibility and ideal cylindrical geometrical
assumption.

2.3 Ratio of Static Dynamic inflation

The Cunnane et. al, dataset [8] provided the static and dynamic
inflation curves. In this study we considered isovolumetric

constraints and therefore the thickness of the cylindrical tube
narrows as the tube inflates. We computed the average
incremental modulus (over 0 to 10 kPa) for the static levels
with the newly found diameters from step 2.1 and for the
dynamic inflation data. The incremental modulus (Einc) is a
linear measure tissue’s stiffness in response to an incremental
increase in pressure [8]. The incremental modulus for thick
cylindrical vessels is calculated as:
APy (2R?R 2P[R%
B = ot () + (28
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Where R; is the internal radius, R is the external radius and Pi
is the pressure at each increment. The incremental modulus
was calculated for each sample for both static (Eswr) and
dynamic (Eayn) testing using the data provided by Cunnane et
al. In principle, we could use in-vivo urethral saline volume
and the external diameter measurements to approximate the
thickness/inner radius, but we use the histological test data.
The viscoelastic behaviour was characterised by using one
dimensional generalised maxwell model branch as formulated
by Holzapfel et al. 2002 [5,9]. The relationship between Beta
(B«*) and Eine modulii for static (Estar) and dynamic (Edyn) tests
is provided as follows:

B = 2am g (4)

Estat
where Edgyn / Eswe is the ratio of the mean of incremental
modulus of dynamic and static tensile testing range.

The two parameters that describe the viscoelastic process for
a branch are Bo* and T« Bo” is the dimensionless free energy
factor (viscoelastic stress contribution) and t. is the retardation
time associated with the maxwell element branch in the model.
These parameters contribute to the material response to time
dependent stress [5]. In this we consider three maxwell
elements in parallel to a free hyperelastic spring. Here we
consider three viscoelastic branch and therefore Xf«"= B1™+
B2* + P3*. We constrained the energy dissipation to be equal
from 1s to 100s into 3 branches and consider 1= 1s, T2= 10s
and t5= 100s to encompass a wide spectrum where viscosity is
prevalent. The determination of the Bo” value was carried out
by employing eq.3 for every individual sample.

2.4 Finite Element Method (FEM) vs
experimental data

As noted previously, the step pressure profile used for vessel
inflation undertaken for static analysis shows viscoelastic
effects for each step. COMSOL (v6.2) was used to perform the
forward modelling the chosen samples in-vivo inflation. The
sample specific urethral sample geometry, in-vivo axial stretch
was used to initialize the geometry. The identified Demiray
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hyperelastic model parameters A and B, the viscoelastic
branch parameter Bo* for each of the chosen time constants (T«
=1s, 10s and 100s) were used to initialize the mathematics of
the model.

Incompressibility constraints were and penalty
formulation was used to solve the FEM solutions. The 2D

axisymmetric geometries were initialized by quadratic

set,

elements. The pressure was applied on the inner lumen of the
vessel with the above pressure mentioned profile as input. The
ideal boundary conditions related to the experimental setup
were initiated. A mesh refinement study was undertaken to
validate that the results stay within 0.5 percent error range.

We compared the simulated outer pressure v/s diameter to
its corresponding experimental data. The estimation of
goodness of fit for our non-linear fitting of the static profile
fitting was performed using Adjusted coefficient of
determination (Adjusted R?).

3 Results and Discussion

The urethral tube is axially eccentric and has a varying
thickness profile throughout its length. The spongy tissue
the thin tube pseudo
compressibility to the structure due to the void vascular spaces
which allow flow of blood in-vivo. These factors make the
measurements sensitive to the site of measurements as well as

surrounding urethral gives

other approximations. Owing to these approximations,
unsuitable values were arrived for sample 2 and 4. The dataset
for sample 8 did not provide the static analysis curves and

therefore was excluded too.

10.974
10.973 Fitting e
10,972 “ ‘M" ”\ 2=11.022
L}% for Time=co
__10.971 ) ‘\l
£ #lY
£ 1097 W',f
3 ;‘/a‘/&
% 10.969 l r J
e 10.968 “ ‘\ ;1 / J. ‘ ‘ t
§ '\“ ‘ ‘| “ f‘ ﬁ ,]
10.967 ‘:H va \M,,H .f
10.966 P ll‘
10.965
2020 2030 2040 2050 2060 2070 2080 2090 2100
Time (s)

Figure 1: The example fitting of Diameter v/s Time for sample 1.
Only the 10 kPa pressure step for period of 50s was considered.
In case of standard approach, the quasistatic diameter would be
assumed 10.97mm. But by fitting, the value arrived to is
11.022mm which is a 0.5% difference.

Table 1: The identified A and B Demiray parameters along with the
value of the B, branches for each sample. The adjusted R?value
suggests good fitting for sample 1, 3 and 5 while not so good fitting
for sample 7 and 9.

Sample 7,705,753 [5] L [-] A[kPa], | Adjusted
B[] R[]

1 1, 0.418 1.1057,
PR I et

3 1, 0.901 0.864,
o | e | o

5 1, 0.238 1.868
s e | oo

6 1, 0.148 0.872,
100 oot | 007 |

7 1, 0.037 0.254,
PR - e T

9 1, 0.565 0.424,
5| ame | s | o

A refinement as detailed in 2.1 was applied to the remaining
samples and an example of fitting with sample 1 for 10 kPa
In the
approximate case, the static diameter would have been
10.97mm but due to the fitting, the predicted value is 11.02mm.
In the refined approach predicted values were seen to increase
by 0.5-5 percent of the experimental outer diameter stretches,

step for its 50s duration is shown in Figure 1.

with more deviation in the initial of pressure steps. If the
diametric stretches in the lumen of the vessels were computed,
the effects were significantly larger. We can infer from the fit
values that the experimental approach underestimates the
elasticity by a few percentages for the outer diameter with
more deviation in the initial pressure region. The identified
values of A and B of the Demiray model in many cases shows

S
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Figure 2: The Energy dissipation is constant across angular
frequency from 102 (1 =100s) until 10° (1=1s).
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Figure 3: FEM procedure outputs for sample 3 using partial
fitting and assumptions shows a good comparable output
(Adjusted R2>0.95) using the hyper-viscoelastic approach. The
experimental data suggests the viscous behaviour in tissues is
dynamic and finetuning of energy dissipation can show better
results.

significant deviation of more than 15-20% for the refined
dataset in comparison to standard assumed levels (unrefined
dataset) [in publication, Bhave et al]. Smaller ‘A’ parameter
will have a physiological correlation that the elastin content is

b}

more as percentage within tissues, while smaller ‘B’ values
can be interpreted that the collagen stiffening effects are
triggered later and tissue is more compliant.

We can observe from the Figure 2 that the Energy
Dissipation is constrained and remains approximately constant
for 7o =1s till 100s (Angular frequency 102 Hz till 10° Hz) The
end result comparison plots are largely due to the effect of: 1)
A and B Demiray parameters, 2) Assumption of average
dynamic:static incremental modulus ratio and 3) Assumption
of constant Energy dissipation between range of 1s to 100s.
The samples 1,3,5 show good fitting characteristics as evident
from ‘Adjusted R? values seen in table 1. It has been observed
that the hyperelastic behaviour of tissues is ‘S’ shaped in
certain cases. The simplicity of the Demiray model due to its
2 parameters is also its limitation as it cannot accurately
replicate certain non-linear urethral biomechanics (samples 6
,7 and 9). In Figure 3, we observe how the FEM outputs fare
in comparison to the experimental data. The Demiray model is
limited by the curvature it can obtain; performs good (see
Table 1) in over half of samples.

The hyperviscoelastic model approach by shows good
capacity to model the dissipation in the viscous branches to be
With  more
experimental data w.r.t dynamic testing, the energy dissipation

fine-tuned according to the application.

for each viscoelastic branch can be computed.

4 Conclusion

From a clinical perspective, accurate characterization of tissue
biomechanics during surgery using predictive techniques can
aid the surgeon to make informed decisions and therefore less
chance of errors.

Based on the important points from the current study, it is
intended to further the simulations with 3D setup and
anisotropic characterization of vessels to obtain more realistic
measurements. In future scope we aim to attempt at obtaining
simplified analytical solutions for tissue hyperviscoelasticity.
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