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Abstract: Hyper-viscoelastic models have been used to 
characterize large strains coupled with viscosity. In this study, 
we aimed to model the urethral in-vivo biomechanics through 
a hyper-viscoelastic implementation. First, we used isotropic 
2-parameter Demiray model for identification of urethral tube 
inflation after refining the values of quasistatic states. 
Attempting the approach by Holzapfel et. al., the average ratio 
of the elastic and dynamic modulus was computed to 
determine the stress contribution of the viscoelastic branches. 
The values of the parameters were determined after 
constraining a constant Energy dissipation (generalized 
maxwell) over range 1s to 100s. For the hyper-viscoelastic 
comparison implementation, it was observed that the goodness 
of fit criteria performs good for half of the samples (Adjusted 
R2>0.95). In some samples, the model is limited to fit ‘S’ shape 
curves but still performed well. The above identification 
technique and the hyper-viscoelastic in-silico approaches 
show that our approach fares sufficiently for the creep 
response characterization of the urethra. 
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1  Introduction 

A high compliant inflatable intra-luminal sensor-actuator 
system is currently under development at the research 
institutes of Furtwangen University for application within 

urethra/artery [1]. This system will be used to identify tissue 
biomechanics and geometrical properties in-vivo. 
     To enable realistic sensor-tissue simulations, it is first 
essential to individually characterize the tissue biomechanics. 
Hyperelastic models are widely used to characterize time-
invariant (quasistatic level) tissue behaviour parameters 
defined by Delfino/Demiray [2]. More complex 
phenomenological models such as Holzapfel-Gasser-Ogden 
(HGO) [3], GOH model [4] etc. are available. Time varying 
effects (viscosity) have also been modelled as standard linear 
models ,as hyper-viscoelastic approaches from HGO [5], 
Fractional models [6] and others [7].  
     Urethra is a complex organ and has limited biomechanical 
studies carried out in a constrained environment and with 
certain approximations. It is the aim of this study to refine the 
biomechanical data using simple fitting methods and further 
apply a hyper-viscoelastic approach to capture both the 
hyperelastic and viscous effects of the urethra.   
       

2  Methods 

The dataset for urethral tube inflation was utilized Cunnane 
et.al. [8] In their experimental setup they applied a step 
pressure profile to the urethral tube (post elongating to its pre-
excised axial prestretch) from 0 to 10 kPa in incremental steps 
of 1 kPa while each step was held for around 300s. This was 
performed to obtain the approximate static stretch levels of 
urethral tube. They later performed histological assessment on 
the samples to obtain the average thickness of tissues for each 
sample. 
The method is divided into multiple steps for inflation: 
2.1) Use the Pressure v/s Diametric extension profile to 

perform fitting by prediction of the ideal quasistatic 
states. 

2.2) Use the predicted quasi-static values for each sample to 
identify the in-vivo hyperelastic model fit using 2 
parameter Demiray model.   

2.3) Calculate the average incremental modulus between the 
static and dynamic inflation profile from Cunnane Dataset 
[8] and use it to calculate the contribution of 3 generalized 
maxwell branches for constant Energy dissipation ( with 
procedure defined by HGO ) [5]. 
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2.4) Obtain the Pressure v/s Diametric extension data for the 
in-silico hyper-viscoelastic approach (Demiray+ 
generalized maxwell (HGO)) using the actual pressure 
profile for each sample. Comparing the goodness of fit for 
the experimental data and the in-silico simulations for the 
above curve. 

2.1 Optimization 

It is well known that tissues have a dynamic range of 
biomechanical properties. As time is generally a constraint to 
perform in-vivo experiments, methods can be utilized to 
optimize the data obtained. In the current case an exponential 
function was deployed to fit the parameters along with 
multistart algorithm to obtain a global minimum. 

Ø = 𝑎ଵ െ ሺ𝑃௧ ∗ 𝑎ଶሻ ∗ 𝑒ି௧ ௔య⁄    (1) 

The  ‘ax’ are phenomenological parameters while Pt is input 
vessel pressure at time ‘t’. a1 parameter as standalone would 
provide the diameter ‘Ø‘ when t=∞ (quasistatic equilibrium 
point), because the contribution of part with the exponent 
arrives to value of ‘0’ . This equation is applied manually to 
each 50 second range for each pressure step at its end (when 
applied inflation pressure within urethral lumen was largely 
constant and changes in diameter were of relatively slower rate 
than the rest of the preceding part of step). The corresponding 
value for the diameter at the hypothetical t=∞ was computed 
for each incremental pressure step. 

2.2 Demiray model fitting 

Once the pressure v/s stretch values were obtained, a simple 
exponential based hyperelastic model was used to fit the 11 
points (0:1:10 kPa) for each tubular sample. The equation is 
given by: 

൫𝐴 𝐵ൗ ൯ ∗ ቀ𝑒
஻
ଶൗ ∗൫ఒഇ

మାఒೝ
೥ାఒ೥మିଷ൯ െ 1ቁ      (2) 

Where A is stress parameter and B defines the shape of the 
exponent. 𝜆ఏ 𝜆௥  𝜆௭ are the principle stretch components that 
were obtained by simple calculations. A and B parameters 
were identified for each of the samples with assumption of 
tissue incompressibility and ideal cylindrical geometrical 
assumption. 

2.3 Ratio of Static Dynamic inflation 

 
The Cunnane et. al, dataset [8] provided the static and dynamic 
inflation curves. In this study we considered isovolumetric 

constraints and therefore the thickness of the cylindrical tube 
narrows as the tube inflates. We computed the average 
incremental modulus (over 0 to 10 kPa) for the static levels 
with the newly found diameters from step 2.1 and for the 
dynamic inflation data. The incremental modulus (Einc) is a 
linear measure tissue’s stiffness in response to an incremental 
increase in pressure [8]. The incremental modulus for thick 
cylindrical vessels is calculated as: 
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Where Ri is the internal radius, Ro is the external radius and PI 

is the pressure at each increment. The incremental modulus 
was calculated for each sample for both static (Estat) and 
dynamic (Edyn) testing using the data provided by Cunnane et 
al. In principle, we could use in-vivo urethral saline volume 
and the external diameter measurements to approximate the 
thickness/inner radius, but we use the histological test data.  
The viscoelastic behaviour was characterised by using one 
dimensional generalised maxwell model branch as formulated 
by Holzapfel et al. 2002 [5,9]. The relationship between Beta 
(βα∞) and Einc modulii for static (Estat) and dynamic (Edyn) tests 
is provided as follows: 

𝛴β஑ஶ ൌ
ாdyn

ாstat
െ 1     (4) 

where Edyn / Estat is the ratio of the mean of incremental 
modulus of dynamic and static tensile testing range. 
The two parameters that describe the viscoelastic process for 
a branch are βα∞ and τα. βα∞ is the dimensionless free energy 
factor (viscoelastic stress contribution) and τα is the retardation 
time associated with the maxwell element branch in the model. 
These parameters contribute to the material response to time 
dependent stress [5]. In this we consider three maxwell 
elements in parallel to a free hyperelastic spring. Here we 
consider three viscoelastic branch and therefore Σβα∞= β1

∞+ 
β2

∞ + β3
∞. We constrained the energy dissipation to be equal 

from 1s to 100s into 3 branches and consider τ1= 1s, τ2= 10s 
and τ3= 100s to encompass a wide spectrum where viscosity is 
prevalent. The determination of the βα∞ value was carried out 
by employing eq.3 for every individual sample.  

2.4 Finite Element Method (FEM) vs 
experimental data 

As noted previously, the step pressure profile used for vessel 
inflation undertaken for static analysis shows viscoelastic 
effects for each step. COMSOL (v6.2) was used to perform the 
forward modelling the chosen samples in-vivo inflation. The 
sample specific urethral sample geometry, in-vivo axial stretch 
was used to initialize the geometry. The identified Demiray 
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hyperelastic model parameters A and B, the viscoelastic 
branch parameter βα∞ for each of the chosen time constants (τα 
=1s, 10s and 100s) were used to initialize the mathematics of 
the model. 
     Incompressibility constraints were set, and penalty 
formulation was used to solve the FEM solutions. The 2D 
axisymmetric geometries were initialized by quadratic 
elements. The pressure was applied on the inner lumen of the 
vessel with the above pressure mentioned profile as input. The 
ideal boundary conditions related to the experimental setup 
were initiated. A mesh refinement study was undertaken to 
validate that the results stay within 0.5 percent error range. 
    We compared the simulated outer pressure v/s diameter to 
its corresponding experimental data. The estimation of 
goodness of fit for our non-linear fitting of the static profile 
fitting was performed using Adjusted coefficient of 
determination (Adjusted R2).  
 

3  Results and Discussion 

The urethral tube is axially eccentric and has a varying 
thickness profile throughout its length. The spongy tissue 
surrounding the thin urethral tube gives pseudo 
compressibility to the structure due to the void vascular spaces 
which allow flow of blood in-vivo. These factors make the 
measurements sensitive to the site of measurements as well as 
other approximations. Owing to these approximations, 
unsuitable values were arrived for sample 2 and 4. The dataset 
for sample 8 did not provide the static analysis curves and 
therefore was excluded too.  

Table 1: The identified A and B Demiray parameters along with the 
value of the βα∞ branches for each sample. The adjusted R2 value 
suggests good fitting for sample 1, 3 and 5 while not so good fitting 
for sample 7 and 9. 

 
      
   A refinement as detailed in 2.1 was applied to the remaining 
samples and an example of fitting with sample 1 for 10 kPa 
step for its 50s duration is shown in Figure 1. In the 
approximate case, the static diameter would have been 
10.97mm but due to the fitting, the predicted value is 11.02mm. 
In the refined approach predicted values were seen to increase 
by 0.5-5 percent of the experimental outer diameter stretches, 
with more deviation in the initial of pressure steps. If the 
diametric stretches in the lumen of the vessels were computed, 
the effects were significantly larger. We can infer from the fit 
values that the experimental approach underestimates the 
elasticity by a few percentages for the outer diameter with 
more deviation in the initial pressure region. The identified 
values of A and B of the Demiray model in many cases shows  

Sample   τ1,τ2,τ3 [s] βα∞ [-]   A[kPa], 
     B[-] 

Adjusted 
 R2[-] 

1  1,        
10,       
100      

0.418 
0.247 
0.199 

1.1057, 

1.4016      0.959 

3  1,        
10,       
100      

0.901 
0.533 
0.431 

0.864, 

0.827 
     0.972 

5  1,        
10,       
100      

0.238 
0.141 
0.114 

1.868 

0.799 
     0.983 

6   1,        
10,       
100      

0.148 
0.087 
0.071 

0.872, 

0.047 
     0.909 

7  1,        
10,       
100      

0.037 
0.022 
0.017 

0.254, 

3.226 
    0.814 

9  1,        
10,       
100      

0.565 
0.336 
0.272 

0.424, 

0.105 
    0.848 

Figure 2: The Energy dissipation is constant across angular 
frequency from 10-2 (τ =100s) until 100 (τ=1s). 

Figure 1: The example fitting of Diameter v/s Time for sample 1. 
Only the 10 kPa pressure step for period of 50s was considered. 
In case of standard approach, the quasistatic diameter would be 
assumed 10.97mm. But by fitting, the value arrived to is 
11.022mm which is a 0.5% difference. 
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significant deviation of more than 15-20% for the refined 
dataset in comparison to standard assumed levels (unrefined 
dataset) [in publication, Bhave et al]. Smaller ‘A’ parameter 
will have a physiological correlation that the elastin content is 
more as percentage within tissues, while smaller ‘B’ values 
can be interpreted that the collagen stiffening effects are 
triggered later and tissue is more compliant.  
        We can observe from the Figure 2 that the Energy 
Dissipation is constrained and remains approximately constant 
for τα =1s till 100s (Angular frequency 10-2 Hz till 100 Hz) The 
end result comparison plots are largely due to the effect of: 1) 
A and B Demiray parameters, 2) Assumption of average 
dynamic:static incremental modulus ratio and 3) Assumption 
of constant Energy dissipation between range of 1s to 100s. 
The samples 1,3,5 show good fitting characteristics as evident 
from ‘Adjusted R2’ values seen in table 1. It has been observed 
that the hyperelastic behaviour of tissues is ‘S’ shaped in 
certain cases. The simplicity of the Demiray model due to its 
2 parameters is also its limitation as it cannot accurately 
replicate certain non-linear urethral biomechanics (samples 6 
,7 and 9). In Figure 3, we observe how the FEM outputs fare 
in comparison to the experimental data. The Demiray model is 
limited by the curvature it can obtain; performs good (see 
Table 1) in over half of samples. 
     The hyperviscoelastic model approach by shows good 
capacity to model the dissipation in the viscous branches to be 
fine-tuned according to the application. With more 
experimental data w.r.t dynamic testing, the energy dissipation 
for each viscoelastic branch can be computed. 

4 Conclusion 

From a clinical perspective, accurate characterization of tissue 
biomechanics during surgery using predictive techniques can 
aid the surgeon to make informed decisions and therefore less 
chance of errors.  
   Based on the important points from the current study, it is 
intended to further the simulations with 3D setup and 
anisotropic characterization of vessels to obtain more realistic 
measurements. In future scope we aim to attempt at obtaining 
simplified analytical solutions for tissue hyperviscoelasticity. 
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