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Abstract: Deep learning models for the classification of elec-
trocardiograms (ECGs) are able to learn disease-specific pat-
terns, but they are rarely implemented in medical practice due
to their "black box" nature. Post-hoc explainable artificial in-
telligence (XAI) methods compute regions of interest (ROI)
which are of importance for a model’s decision making. How-
ever, it needs to be further analyzed whether a model focuses
on the morphological or rhythmical information within the
ROIs. We evaluate a pre-trained ResNet for sinus bradycar-
dia (SB) and sinus tachycardia (ST) classification on the PTB-
XL dataset using the XAI method Integrated Gradients. We
compare the confidence of the model predictions to ECG fea-
tures used by clinicians using correlation analysis. Correlation
is highest for RR intervals (SB: 0.44) and atrial as well as
ventricular heart rates (ST: 0.51), with the majority exceed-
ing clinical thresholds for both disorders, indicating that the
model learned rhythmical features. Except for QT intervals in
ST classification, morphological features such as duration and
amplitudes of P-/T-waves do not show any correlation.
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1 Introduction

Artificial neural networks take raw electrocardiograms (ECGs)
as input and output probabilities for the presence of the dis-
eases they were trained on. Due to the increasing availability of
large datasets, these networks are able to learn disease-specific
patterns based on millions of ECGs and reach high sensitivity
and specificity [1]. Despite their broad application in other
fields [2, 3], these "black boxes" are hardly implemented in
medical practice, since they do not provide insights in their de-
cision making. Explainable artificial intelligence (XAI) meth-
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ods address this shortcoming by computing regions of interest
(ROI) pointing to the most relevant parts of an input signal for
the model’s decision.

Recently, we proposed an open-source framework based
on the post-hoc XAI method Integrated Gradients (IG) [4]
which we customized to the analysis of networks for ECG
classification [5] and age prediction [6]. Results revealed sev-
eral insights; for example that the ROI of a model for diag-
nosis of atrial fibrillation (AF) was centered on the P-wave
and the model learned to use its existence for ruling out AF.
While the ROI can be shown to a cardiologist as a visual land-
mark and might increase trust in the network, the informative
value is rather limited and not comparable to evidence-based
gold standard, since features recognized by these models may
not match those mentioned in clinical guidelines [7]. Instead,
an analysis of the network’s decision w.r.t. standard ECG pa-
rameters based on exact heartbeat interval features [8, 9], such
as the RR interval, would have higher informative value, es-
pecially being able to distinguish between morphological and
rhythmical features recognized in each ROI.

Hence, in this work we extend the open-source XAI
framework proposed in [5] by integrating evidence-based ECG
features used by cardiologists and analyze their correlation
with a ResNet’s decisions.

2 Medical Background

We focus on two rhythmical ECG abnormalities, sinus brady-
cardia (SB) and sinus tachycardia (ST), which are solely diag-
nosed based on evaluation of rest ECG without further symp-
toms or blood results necessary. In a normal heart cycle, the
sinus node initiates the contraction of the heart, starting with
the atria. This is shown in an ECG as P-wave, followed by the
QRS-complex representing the contraction of the ventricles,
and a T-wave indicating ventricular depolarization. A normal
frequency of these heart cycles is 50 − 100 bpm at rest, with
a QT interval of 350 − 550 ms, a P duration of 50 − 100 ms
and QRS duration of 60− 100 ms [11]. Moreover, the normal
amplitude measured in lead II should not exceed 2/3 of the
R-peak for T-waves [11].
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Tab. 1: Features from PTB-XL+ [10] sorted by number of recordings exceeding the clinical threshold. Percentages are given with regard
to SB and ST recordings classified with high confidence (> 0.5), respectively. Pearson correlation coefficient (PCC) is calculated for each
feature compared to model confidence. bpm: beats-per-minute, ms: milliseconds.

Sinus bradycardia PCC Sinus tachycardia PCC

RR_Mean_Global > 1, 200 ms 99.50 % 0.44 HR_Ventr_Global > 100 bpm 99.75 % 0.51

HR_Ventr_Global < 50 bpm 95.99 % −0.28 RR_Mean_Global < 600 ms 99.75 % −0.40

HR_Atrial_Global < 50 bpm 94.49 % −0.23 HR_Atrial_Global > 100 bpm 96.71 % 0.26

P_Dur_II > 100 ms 83.21 % 0.05 QT_Int_Global < 350 ms 70.38 % −0.34

QRS_Dur_Global > 100 ms 41.35 % 0.03 T_Amp_II > 2/3*R_Amp_II 12.15 % −0.06

T_Amp_II > 2/3*R_Amp_II 9.77 % 0.04 P_Dur_II < 50 ms 8.35 % −0.03

QT_Int_Global > 550 ms 0.50 % 0.27 QRS_Dur_Global > 120 ms 6.84 % −0.07

An SB means the heart rate is regular and below 50 bpm,
while an ST means its regular and above 100 bpm. Both can
be detected manually via mean PP-intervals, i.e. the distance
between two heartbeats measured from the initial sinus node
activity [11], which usually corresponds to the mean RR-
interval.

3 Methods

We used PTB-XL [12] containing 21, 414 12-lead ECGs of
patients older than 16 years with annotation for the associated
diseases as dataset. We exclude 363 patients under 16 since the
network applied was trained on adults only. The mean age of
the patients is 59.74 years (±16.51) with 48% woman. Within
PTB-XL there are 506 and 685 recordings annotated as SB and
ST, respectively.

We analyze a state-of-the-art pre-trained ResNet [13]
trained on more than two million ECGs to predict the pres-
ence of both SB and ST. First, we predict both disorders and
calculate the F1-score to measure model performance. To gain
insight into the decision process, we then make use of the XAI
framework proposed in [5] which is build on Python and the
iNNvestigate library for the computation of IG relevances.

IG attribute the prediction of a model 𝑓 on unseen data
to its input features 𝑥, using a baseline input 𝑥̃ for attribution
calculation. The IG are defined as the path integral of the gra-
dients along the straight-line path from 𝑥̃ and 𝑥, defined as
𝑥̃+𝛼(𝑥− 𝑥̃) for 𝛼 ∈ [0, 1]. The integrated gradient for the 𝑖-th
input dimension is then defined as

IG𝑖(𝑥) := (𝑥𝑖 − 𝑥𝑖) ·
1∫︁

0

𝜕𝑓(𝑥̃+ 𝛼(𝑥− 𝑥̃))

𝜕𝑥𝑖
𝑑𝛼, (1)

where 𝜕𝑓(𝑥)
𝜕𝑥𝑖

is the gradient of output 𝑓(𝑥) along the 𝑖-th di-
mension [14].

We analyze whether features located at ROIs identi-
fied from IG relevances correlate with the confidence of the

ResNet. For each feature, we calculate for all recordings clas-
sified with high confidence (> 50 %) a) the percentage of
recordings where the feature is abnormal with thresholds from
Section 2, as well as b) the Pearson correlation coefficient
(PCC) with the ResNet confidence.

We include the rhythmical features RR in-
terval (RR_Mean_Global), ventricular heart rate
(HR_Ventr_Global), and atrial heart rate (HR_Atrial_Global),
as well as the morphological features QT interval
(QT_Int_Global) and QRS duration (QRS_Dur_Global), aver-
aged over all leads. Additionally, we extract the morphological
features R amplitude (R_Amp_II), T amplitude (T_Amp_II),
and P duration (P_Dur_II), averaged over lead II, as there are
no global equivalents. Features were selected based on cardiol-
ogy literature (cf. Section 2) and extracted with a commercial
ECG delineation algorithm, GE Healthcare’s Marquette™
12SL™, from the recently published PTB-XL+ dataset [10].

4 Results

Analyzing the PTB-XL dataset with the Ribeiro model pro-
duces F1-scores of 0.67 for SB and 0.83 for ST, respectively.

Figure 1 displays the results of XAI analysis for a true
positive SB result. As can be seen in this example, the ROI is
centered on the QRS complex as well as on the T-wave where
moderate positive values are accumulated. In some leads, such
as V1 and II, P-waves appear in the ROI as well. In Figure 2
similar ROIs can be seen for a true positive ST recording, al-
though ROIs centered on P- and T-waves are scarce. In both
classifications, most ROIs can be found in I, II, aVR and V1.

In Table 1 features related to these ROIs are compared to
clinical thresholds for all recordings classified with high con-
fidence (> 0.5). For both SB and ST, heart rate as well as RR
mean are abnormal in more than 94% of cases, respectively.
Furthermore, a long P-wave duration in SB (83.21 %) and a
short QT interval in ST (70.38 %) can be observed. On the
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Fig. 1: XAI results for recording 4334 from PTB-XL [12], classi-
fied correctly with SB (0.69). Positive IG attributions (pink) with a
threshold of 0.4 can be seen on QRS-complexes, sometimes P-
and T-waves, mainly in V1.

contrary, QRS duration shows no correlation (|PCC| < 0.07) in
both cases.

Figure 3 shows the agreement between the mean RR in-
terval and network confidence. ECGs are represented by gray
(healthy controls), blue (SB classification with low confidence
(model output ≤ 0.5)), or red (SB classification with high con-
fidence (> 0.5)) dots. A clear trend w.r.t. model confidence can
be observed showing that the higher the confidence of the net-
work, the higher the RR interval with a PCC of 0.44 showing
moderate correlation. Predictions with high confidence were
in 99.5% above the clinical threshold of 1, 200 ms.

Similarly, Figure 4 shows the agreement between the
mean ventricular heart rate and network confidence. A high
PCC of 0.51 can be observed. Predictions with high confidence
were in 99.75% above the clinical threshold of 100 bpm.

5 Discussion

In concordance with clinical guidelines for both SB and ST
[8, 9], the ResNet analyzed in this work seems to base it’s
decisions on rhythmical features only. Correlation is highest
for ventricular and atrial heart rates as well as the RR interval,
which is similar to the ventricular heart rate. Although the QT
interval as a morphological feature correlates to the models
confidence as well, this could be explained due to this interval
changing in response to the heart rate.

However, the lower concordance of network decisions and
atrial heart rates compared to other rhythmical features sug-
gests that the ResNet concentrated on RR intervals (i.e. ven-
tricular heart rate), rather than PP intervals mentioned in car-
diology guidelines. This is underlined by ROIs which are con-

Fig. 2: XAI results for recording 16903 from PTB-XL [12], classi-
fied correctly with ST (0.69). Positive IG attributions (pink) with a
threshold of 0.4 can be seen on QRS-complexes, mainly in V1.

centrated mostly on QRS complexes for both, SB and ST.
However, this might probably be an effect of the PTB-XL+
ground truth which was determined using an ECG delineation
algorithm, which are known to perform better in detecting R-
peak features than P-wave features [15]. This was also under-
lined by the feature HR_Atrial_Global containing 25 ”N/A”
values for both disorders.

In summary, the analyzed ResNet presumably learned
rhythmical features for SB and ST, however, not the same fea-
tures as defined by cardiology guidelines. In future work we
will analyze these concordances further by examining more
features and including new methods for feature importance
such as proposed in [16]. Additionally, due to the low cor-
relation of model confidence and QRS duration, it could be
assumed that the model is able to distinguish between atrial
and ventricular tachycardia, with the latter requiring broad
QRS complexes for diagnosis, which will be investigated by
the inclusion of further labels.
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Fig. 3: Each dot in the scatter plots represents a single ECG clas-
sified by the network, with gray dots representing healthy controls
and colored dots SB patients. The y-axes show the global mean
RR interval from PTB-XL+ [10] in relation to the confidence of the
ResNet for SB. The dashed line indicates the evidence-based
threshold for bradycardic heart rates of < 50 bpm or 1, 200 ms.
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Fig. 4: Each dot in the scatter plots represents a single ECG clas-
sified by the network, with gray dots representing healthy controls
and colored dots ST patients. The y-axes show the global ventric-
ular heart rate from PTB-XL+ [10] in relation to the confidence of
the ResNet for ST. The dashed line indicates the evidence-based
threshold for tachycardic heart rates of > 100 bpm.
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