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Abstract: Emotion influences the daily activity of human life.
The complex interaction between the central nervous system
(CNS) and peripheral nervous system (PNS) contributes to
emotional experiences. Various studies have investigated this
interaction during sleep, meditation, deception, and cognition.
However, research focusing exclusively on emotion-related in-
teractions is limited. In this work an attempt has been made to
assess the CNS and PNS interaction by analyzing Electroen-
cephalogram (EEG) and Photoplethysmogram (PPG) signals
during emotional arousal induced by audio-visual stimuli ob-
tained from the DEAP database . EEG signals are divided into
four frequency bands: theta (4-7 Hz), alpha (8-12 Hz), beta
(13-30 Hz), and gamma (30-45 Hz). The envelope of EEG and
PPG signals is then computed to determine cross-frequency
coherence (CFC). The Wilcoxon Rank-sum test is employed to
assess the statistical significance of CFC in low (LA) vs. high-
arousal(HA) for various electrodes. Results indicate that CFC
can discriminate the LA vs HA. Higher CFC is found in HA
compared to LA for the beta and gamma bands, while the op-
posite trend is observed in the theta and alpha bands. The FP1,
FC1, and T7 are found to be statistically significant (p < 0.05)
in differentiating LA with HA. Therefore, this study offers in-
sights into CNS-PNS interaction during emotional arousal.
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1 Introduction

Emotion is the psychological state of sentiments provoked by
either internal factors, external factors, or a combination of
both. It is essential and greatly impacts every spectrum of daily
human life [1]. Out of the different emotional models, Rus-
sell’s circumplex model, which is dimension-based, is widely
utilized in studies related to affective computing [2]. Accord-
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ing to this model, emotion can be quantified from the aspect
of arousal i.e. how intense the emotional state is.

The nervous system and cardiovascular system work in
synergy in various emotional states. It is characterized by an
intricate interaction. Biologically, the conversion of physical
changes into emotions relies on the interaction between the
central nervous system (CNS) and peripheral nervous system
(PNS). This remains a topic under further research within psy-
chophysiology. The electroencephalogram (EEG), a bio-signal
originating from the central nervous system (CNS), records the
brain’s electrical activity. The brain controls various functions
of the peripheral nervous system (PNS), including those asso-
ciated with heart rate and respiration. Due to its ease of im-
plementation and affordability [3], the photoplethysmogram
(PPG), a signal originating from the PNS, can be utilized to
study neurocardiologic interactions.

Numerous studies have been carried out concerning the
connection between the brain and heart during periods of ap-
nea, normal sleep, and meditation [4, 5, 6]. Khandoker et al.
showed that the coherence between Electrocardiogram (ECG)
and EEG signals is higher during normal breathing events in
Rapid Eye Movement (REM) sleep than in Non-Rapid Eye
Movement (NREM) sleep [6]. Even though EEG and cardio-
vascular signals have uncorrelated amplitudes, coherency can
represent the extent of the linear association between these sig-
nals [7].

The coherency shows how much of one time series’ vari-
ability can be explained by its linear relationship with the other
series at a particular frequency. The concept of coherence has
been successfully applied in understanding the interactions be-
tween the heart and lungs during postural change [8], as well
as in studying neurophysiological states like typical sleep pat-
terns [9]. In [6] it is observed that there is a positive relation-
ship between heart coherence and peak/relative alpha power
during meditation, but this coherence is not present during the
baseline condition. However, these type of interaction-based
studies in the domain of emotion is limited. This study aims
to assess how the amplitude envelope of the PPG and various
EEG frequency bands interact during high arousal (HA) and
low arousal (LA) through cross-frequency coherence.

This work is licensed under the

49



—— S.Banik et al., Assessment of EEG-PPG Cross Frequency Coherence

Filtering to 6, Envelope of
EEG 1 d |—] .
* BB’;:; ¥ eachband [~ Estimation of Cross
Frequency
Filtering Coherence
PPG between 0.6 to |— Envelop.e of /
5Hz filtered signal

Fig. 1: Block diagram for cross-frequency coherence calculation

2 Methodology

Figure 1 illustrates the computational process block diagram
of the cross-frequency coherence-based method employed in
this study.

2.1 Database description

EEG and PPG signals from the DEAP database have been used
for this investigation. EEG and PPG signals are recorded dur-
ing the observation of 40 unique one-minute video clips using
a Biosemi ActiveTwo system. EEG is being collected using
32 AgCl electrodes, and PPG is being collected through one
channel. The dataset includes physiological signals from 32
participants. These signals are acquired at a sampling rate of
512 Hz [10].

The data of participants is collected at two distinct sites:
the first 22 at Twente and the last 10 at Geneva. The quality of
these signals also varies. Particularly, the PPG datasets of the
final 10 subjects display significant noise interference, lead-
ing to distorted waveforms. This complicates the extraction of
crucial information from these signals. Consequently, this pa-
per chooses to utilize data from the initial 22 subjects only
[11]. Using the arousal ratings, the videos watched by partici-
pants are divided into low arousal (LA) and high arousal (HA)
categories. Videos rated above 5 are considered high arousal,
whereas those rated below 5 are classified as low arousal. Sim-
ilarly, the corresponding EEG and PPG signals are sorted ac-
cordingly.

2.2 Preprocessing

The EEG signals from all 32 channels are decomposed into
four bands namely 6(4-7 Hz), a(8-12 Hz), 8(13-30 Hz), and
~v(30-45 Hz). PPG indicates heart activity indirectly by mea-
suring blood volume changes with each heartbeat. However, it
is affected by arterial stiffness, peripheral resistance, and vas-
cular tone. To minimize these effects, the trend is corrected
by subtracting temporal low-frequency drift, calculated using
a 256-point moving average filter [10]. Additionally, a band-
pass filter with a cutoff frequency of 0.6 Hz to 5 Hz is applied
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to extract important information [12]. Then the the extracted
PPG signals are subjected to z-score normalization.

2.3 Amplitude envelope

The envelope of EEG and PPG is obtained by using Hilbert

transform [7]. If () is a real-valued signal, its analytic signal

xa(t) is given by the Hilbert transform:
Ta(t) = x(t) +j - Hlz(t)] M

where j is the imaginary unit and #[z(¢)] denotes the Hilbert
transform of z(t). H[z(¢)] can be defined as:

o0
_1 [ z(n)
H(z(t)) = - / P dr 2)
—0o0
Finally, the envelope of the analytic signal is given by:
e(t) = |za(t)] 3)

2.4 Cross-frequency coherence (CFC)

It calculates the magnitude square coherence among the enve-
lope of the filtered PPG signal and different EEG signal bands.
To determine this, Welch’s method of overlapped averaged pe-
riodograms has been employed. It is evaluated as

__|Pep(N*
CFCL() = Paea(F) Poea ()

Here, Pgrg(f) and Pppg(f) represent the spectral power

“

densities of the EEG and the PPG signal envelope, respec-
tively. Pgp(f) denotes the cross-power spectral density be-
tween the EEG amplitude and the PPG signal. The magnitude
of CFC varies with frequency and has values ranging from 0
to 1, indicating the degree of correspondence between two sig-
nals. A coherence value of 1 means the two signals are com-
pletely related, while a value of 0 means the signals are com-
pletely independent [13].

2.5 Statistical analysis

The CFC is calculated for both annotated high and low-arousal
EEG-PPG signals. This process is repeated for all the elec-
trodes and all frequency bands. Further, the Wilcoxon rank
sum test is performed to assess significance levels of CFC for
different arousal levels [14].
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Fig. 2: Representative EEG signal for LA (a), HA (b) for electrode FC1, and PPG signal for LA (c), and HA (d) of a subject

3 Results and Discussion

Figure 2 illustrates EEG and PPG signals recorded from a par-
ticipant during low and high-arousal videos. The signals ex-
hibit greater variability during low-arousal videos, yet visual
inspection alone does not yield concrete conclusions.

Fig. 3 shows the topographical variation of CFC through-
out the brain for both the LA and HA states in the case of
theta, alpha, beta, and gamma bands respectively. In the theta
band, during LA elicitation, EEG signals of anterior frontal
and occipital region are slightly coherent with the PPG signal.
Whereas, during high arousal elicitation, an increase of CFC
can be seen in frontal, anterior frontal,fronto-central, temporal,
and occipital electrodes. For the alpha band, during LA elici-
tation, the coherence can be seen in the parietal region. Dur-
ing high arousal, coherence is noticeable in the parietal and
parieto-occipital regions. In the beta and gamma bands, coher-
ence is greater during low arousal than high arousal, mainly in

0.365
0.36
0.355
0.35
0.345

Fig. 3: The topography of CFC for low arousal (upper row) and high arousal (lower row) cases in different frequency bands (from left to

Tab. 1: Statistically significant electrodes and bands

Electrode Band
Theta Alpha Beta Gamma
FP1 - - - *
FC1 - - * -
T7 - - * -
* (p<0.05)

the frontal, fronto-central, parietal, and occipital regions of the
left hemisphere for low arousal. For the gamma band, coher-
ence is primarily seen in the frontal, fronto-central, and centro-
parietal regions. In this study, the EEG theta band-PPG inter-
action in high-arousal videos achieves the highest CFC value
of 0.365, while the beta band-PPG interaction obtains the low-
est CFC value of 0.1325.

Another interesting fact is that, as the frequency band in-
creases the CFC also decreases till the beta band. But In the
case of sleep apnea opposite trend has been seen between

right: theta, alpha, beta, and gamma)
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0.1345 0.1365
0.134 0.136
0.1335

0.1355
0.133
0.1325 0.135
0.1345 0.1365
0.134 0.136
0.1335

0.1355
0.133
0.1325 0.135
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EEG and ECG [15]. Table 1 shows the statistically signifi-
cant electrodes in LA and HA from the CFC aspect. It can
be seen that CFC in FP1 (gamma band), FC1 (beta band),
and T7 (beta band) electrodes are significant electrodes (p<
0.05) for differentiating HA and LA states. This indicates left
hemisphere seems to be pivotal in segregating LA and HA
states. Moreover, the significance of the interaction between
left hemisphere-based frontal EEG and cranial PPG in elicit-
ing emotion has been emphasized in [16].

4 Conclusion

This study aims to understand how the brain and heart in-
teract by analyzing the relationship between EEG and PPG
signals during emotional elicitation by audio-visual stimuli.
Using data from the DEAP database, the study finds that as
arousal levels rise, CFC between EEG and PPG signals gen-
erally decreases in the beta and gamma bands. However, CFC
increases in the theta and alpha bands for increasing arousal
levels. The fronto-centro-temporal region seems crucial for
distinguishing between LA and HA stimuli from the aspect of
the CFC. Enhanced understanding of EEG-PPG dynamics in
response to arousal-inducing stimuli can contribute to better
comprehension of disorders related to emotions.
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