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Abstract: Few-shot learning addresses the problem of clas-
sification when little data or few labels are available. This
is especially relevant in histopathology, where labeling must
be carried out by highly trained medical experts. Prototypical
Networks promise transferability to new domains by using a
pre-trained encoder and classifying by way of a prototypical
representation of each class learned with few samples. We ex-
amine the applicability of this approach by attempting domain
transfer from colon tissue (for training the encoder) to urothe-
lial tissue. Furthermore, we address the problems arising from
representing a class via a small amount of representatives (pro-
totypes) by testing two different prototype calculation strate-
gies. We compare the original “Prototype per Class” (PPC)
approach to our “Prototype per Annotation” (PPA) method,
which calculates one prototype for each example annotation
made by the pathologist. We test the domain transfer capa-
bility of our approach on a dataset of 55 whole slide im-
ages (WSIs) containing six subtypes of urothelial carcinoma
in two granularities: “Superclasses”, which combines the tu-
morous subtypes into a single “tumor” class on top of a ag-
gregated “healthy” and additional “necrosis” class, and “sub-
types”, which considers all eleven classes separately. We eval-
uate the classic PPC approach as well as our PPA approach on
this data set. Our results show that the adaptation of the Pro-
totypical Network from colon tissue to urothelial tissue was
successful, yielding an F1 score of 0.91 for the “superclasses”.
Furthermore, the PPA approach performs very comparably to
the PPC strategy. This makes it a viable alternative that places
more value on the intent of the pathologist during annotation.
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1 Introduction

In the last decade, neural networks have established them-
selves as the most popular method for image classification.
Large amounts of labeled data used to train these neural net-
works have made extremely high classification accuracy possi-
ble in many areas of application. However, sufficient amounts
of labeled data are not always available, e.g., due to the rarity
of the class, or the high cost of labeling. This is especially rele-
vant in histopathology, where labeling is dependent on highly
trained medical experts. To enable accurate classification in
cases such as these where only small amounts of labeled data
is accessible, the field of few-shot learning has emerged.

One few-shot learning approach based on parametrized
models is Prototypical Networks by Snell et al. [6]. Prototypi-
cal Networks learn an encoding so that representations of each
class will form a cluster in the feature space. The clusters are
then represented by a single prototype, which is the mean of
the samples ("supports") of the class. For classification, the en-
coding of a query image is compared to all of the prototypes
and the class of the prototype with the smallest euclidean dis-
tance is assigned.

In the domain of histopathology, Prototypical Networks
have the potential to enable very adaptable classifiers that can
learn an encoding based on a data-rich use case and then use
the flexibility of the design to easily transfer to a new do-
main by adding small amounts of supports in the new do-
main. Possible domain transfers include different stainings,
scanners or organs. A challenge of the Prototypical Network
approach, however, is the calculation of the prototypes, which
can be influenced by outliers, or unstable due to an unrepre-
sentative support set. Classic prototype calculation methods
calculate the prototype(s) from the entire support set of each
class. While this is the most straightforward approach, it omits
semantic information pertaining to the supports, specifically
groupings based on the relative position of supports to each
other e.g., same annotation or same whole slide image (WSI).

This group-agnostic approach may not be very effective
in an interactive setting where a pathologist adapts a Prototyp-
ical Network by adding annotations as needed, and checks the
classification results after each new annotation. For example, if
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the pathologist sees an incorrectly classified area, they would
annotate the area with the correct class and expect the classifi-
cation results to respond accordingly. However, adding a sin-
gle annotation (i.e. a limited number of supports) would most
likely shift the associated prototype but may not have an effect
on actual classification results, e.g., if the number of newly
added supports is much smaller than the total number of sup-
ports, it will not have a large impact on the prototype, which
is the mean value. This can be especially problematic when
morphologically diverse classes are grouped together, such as
when adapting a classifier to recognize healthy and tumorous
tissue in cases where there are many tumor subtypes such as
with the variant histological subtypes of urothelial carcinoma.
Here, small annotations of rare subtypes must be recognized
as tumor tissue as well as more common variants which may
be represented by a much higher number in the support set.

In order to address this problem of unreactive adapta-
tion, we propose an alternative prototype calculation method,
which gives each annotation a greater impact on the classifi-
cation results by calculating a prototype for each annotation
instead of over all of the supports of a class. This effectively
creates semantic subgroups within the supports that resem-
ble the valuable knowledge applied by the pathologist by se-
lecting a specific annotation. Furthermore, we test the general
domain transfer ability of Prototypical Networks, specifically
MultiProto-Nets [2], by using an encoder trained on colon tis-
sue which is then adapted to urothelial tissue.

2 Related Work

Domain transfer using few-shot methods in medical imaging
has been attempted in many different ways, e.g., by fine-tuning
a pre-trained network, or by learning a feature space that can
be translated to new tasks [3]. Domain transfer specifically
with Prototypical Networks has been tested by Deuschel et al.
[2] for various scanners on a single tissue type with a single
staining.

Concerning prototype optimization, Snell et al. attempt
to improve their prototypes by adding a semi-supervised ele-
ment to their training step [5]. Liu et al. [4] propose a semi-
supervised prototype rectification step applied after initial
training in order to improve prototype robustness. Deuschel
et al. [2] calculate multiple prototypes per class using k-means
in order to represent classes with more heterogeneous clusters
in the feature space.
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Fig. 1: a), b), c) show three different subtypes. d) shows the mis-
classification of micropapillary tissue (yellow) as NOS (red) in the
top left corner. The tumor cells themselves look very similar, ex-
plaining the misclassification.

3 Materials and Methods

Our approach to testing the domain transferability of the Pro-
totypical Network and comparing the results of the original
Prototype per Class (PPC) to our proposed Prototype per An-
notation (PPA) method, is split into two parts: First, the do-
main transferability of the Prototypical Network, specifically
the Multi-ProtoNet [2] from colon to urothelial carcinoma is
evaluated using the classic PPC approach. Then, to test the vi-
ability of the PPA approach, the same data is processed with
the new prototype calculation strategy.

We use a dataset of hematoxylin and eosin (HE)-stained
WSIs containing urothelial carcinomas in the resolution
0.194 pm/px. Urothelial cancer lends itself well to our pur-
pose for several reasons: It differentiates into a number of
subtypes, some of which are morphologically very similar
(conventional and micropapillary carcinoma), others of which
are morphologically very different (e.g., neuroendocrine car-
cinoma), as shown in Figures 1a, 1b and 1c. This permits us to
test our approach on a number of diverse classes. The subtypes
can be summarized in a "tumor" superclass [1], which enables
us to test our approach on different granularities of classes, the
"subtypes" and the "superclasses", where the descriptor "sub-
type" is used both for the subtypes of urothelial carcinoma, as
well as for the "subtypes" of healthy tissue.

The dataset consists of 55 WSIs, where 18 are used for
adaptation and 37 are used for testing. Table 1 shows the sub-
types, superclasses and the number of tiles and slides used for
adaptation and testing. Each annotation used in these experi-
ments is split into tiles of 224x224 pixels (50x50pm2), which
are then used as input for the MultiProto-Net.

The encoder backbone of the Multi-ProtoNet is an Effi-
cientNetBO [7] neural network trained on the dataset of more
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subtype superclass  WSiIs (tiles) WSis (tiles) Using these prototypes, we run the "subtypes” and "su-
for adaptation fortesting perclasses” classifiers on our test data. The test set contains at

NOS tumor 3 (680) 18(3637)  least two up to 27 WSIs per "subtype”, as shown in Table 1.

neuroendocrine tumor 3(439) 5(1781) Each of the WSIs of the test set contains one or more ground

sarcomatoid tumor 3(521) 4 (2006) truth annotations, which are used for comparison with the clas-

plasmacytoid tumor 3(352) 4 (1695) ) ) ’

micropapillary tumor 3 (520) 2(2509) sification results.

squamous tumor 3 (598) 2 (2335)

connective tissue healthy 3 (450) 27 (8421)

fat healthy 3(917) 21(064) 3.2 Prototype Calculation Strategy

muscle healthy 3 (520) 23 (4657)

inflammation healthy 3(104) 22 (597) .

necrosis necrosis 3(314) 13 (2126) In the next step, we test our PPA calculation strategy. The

Tab. 1: Urothelial carcinoma dataset. "NOS" refers to "not other-
wise specified", i.e. conventional urothelial carcinoma

than two million 224x224px image patches which was also
used by Deuschel et al. [2]: These patches are extracted from
92 HE stained colon tissue sections from adenocarcinoma re-
sections and are assigned to seven tissue classes. Using the
EfficientNetB0 backbone trained on colon carcinoma to create
a classifier for urothelial carcinoma is the basis of our experi-
ment on domain adaptability for the Multi-ProtoNet approach.

3.1 Domain Transfer from Colon Tissue
to Urothelial Tissue

We conduct our experiments in two different granularities,
yielding the "superclasses" classifier and the "subtypes" clas-
sifier. Both classifiers are adapted using the same annotations,
listed in Table 1, in one case with the superclass label and in
the other with the subtype label. Each subtype class is repre-
sented by three annotations, each from a different WSI in order
to prevent "overfitting" to a single WSI/patient.

For the "superclasses" classifier, this results in 18 anno-
tations for the tumor class, twelve annotations for the healthy
class, and three annotations for the necrosis class. As we are
utilizing the Multi-ProtoNet approach, we allow multiple pro-
totypes per class, specifically, we choose six prototypes per
class, which are calculated using k-means. We choose six pro-
totypes so that each of the six considered tumor subtypes in
our dataset can be represented in feature space, even though
they are all grouped together into a single class. The healthy
and necrosis classes are also represented by six prototypes
although they contain fewer classes, as the Multi-ProtoNet
method sets the same number of prototypes for all classes.

For the "subtypes" classifier, we select three prototypes
per subtype, as established in [2]. Coincidentally, this is also
the number of annotations for each subtype.

setup is identical to the original PPC setup used in the domain
adaptability experiment, there being two different classifiers
adapted at the "subtype" and "superclass" granularities. As op-
posed to the PPC calculation strategy, where the prototypes
are calculated with k-means using all of the supports of each
class, the PPA strategy calculates a single average feature vec-
tor per annotation of each class. This yields 18 prototypes for
tumor, 12 prototypes for healthy and 3 prototypes for necrosis
in the "subtypes" classifier. The "superclasses” classifier also
contains the same numbers of prototypes as the "subtypes"
classifier. As a matter of fact, the prototypes are identical in
both classifiers, as the annotations and therefore the supports
do not change.

4 Results

The overall accuracy, average precision, average recall and av-
erage F1 scores of all four classifiers are listed in Table 2. The
precision, recall and F1 scores are calculated for each class
individually and then averaged over all the classes.

The "superclass" PPC classifier ("super PPC") achieves an
accuracy of 93.6% on the test set of 38828 tiles, with an aver-
age F1 score of 0.912, as shown in Table 2. This is significantly
higher than the values reached by the "subtype" PPC classifier
("sub PPC"), which differentiates between eleven classes in-
stead of three, with 68.3% and 0.572, respectively. An inves-
tigation of the errors showed that the vast majority of errors
introduced by the finer granularity were mixups between the
tumor subtypes. We determined this by summing up the con-
fusion matrices of the subtypes to yield a superclass confusion
matrix, and calculated the scores on this combined confusion
matrix, shown in the line "% sub PPC" of Table 2.

The PPA classifiers show very similar results, with an ac-
curacy of 92.9% and an average F1 score of 0.913 for the "su-
perclass” classifier ("super PPA") and 67.5% and 0.565, re-
spectively for the "subtype" classifier ("sub PPA"). Here, the
summed "sub PPA" confusion matrix scores are identical to
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accuracy avg. prec. avg.recall avg.F1
super PPC  93.6% 89.8% 93.0% 0.912
sub PPC 68.3% 56.6% 59.1% 0.572
3 subPPC 93.4% 90.3% 93.0% 0.916
super PPA  92.9% 90.8% 91.9% 0.913
sub PPA 67.5% 56.4% 58.1% 0.565
Y sub PPA  92.9% 90.8% 91.9% 0.913

Tab. 2: Results of the PPA and PPC metrics for super- and sub-
classes. The X sub PPx results are calculated from the subclass
results combined by superclass i.e. the 3-class problem.

the "super PPA" scores, because the prototypes are equal for
both classifiers, as explained above.

Altogether, the PPA classifiers performed very similarly
to the PPC (i.e. original strategy) classifiers, with only slightly
lower scores for the "subtypes" (0.007 lower F1 score) and
mixed scores for the "superclasses" (0.001 higher F1 score,
but lower recall).

5 Discussion and Conclusion

In general, the transfer from colon to urothelial tissue us-
ing only 33 annotations was successful, as shown by the
high scores of the superclass classifiers. Even the significantly
worse performance of the subtypes classifiers was mostly sat-
isfactory, seeing as we were attempting to distinguish between
eleven, partly very similar tissue types. We qualitatively eval-
uated extreme cases of mixups, e.g., more than 50% of the
ground truth tumor subtype being misclassified as a differ-
ent tumor subtype. In many of these cases, the classification
results were reasonable, since the subtypes can contain very
similar cells e.g., the tumor cells in Figure 1a and Figure 1b.
In some of these cases, the correct classification seems un-
achievable by evaluating a tile individually, since correct clas-
sification would require further surrounding context.
Concerning the comparison of the two prototype calcu-
lation strategies, the similar results are promising for moving
forward with the PPA method, since it most likely offers ad-
vantages over the PPC method for interactive classifier adapta-
tion where it allows capturing the intention behind a carefully
placed annotation. The PPA method will likely be superior at
ensuring that "corrective" annotations will change a local false
prediction to the desired one in the subsequent run - a problem
that is not reflected in the standard quality metrics reported
above. Furthermore, it is likely that the PPA method would
outperform the PPC method in less favorable circumstances.
In our experiments, we chose the parameters very advanta-
geously for the PPC approach, e.g., by setting the number of
prototypes to the exact number of tumor subtypes and gath-
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ering a balanced number of supports for all the classes. If the
number of subtypes is not known, it is easy to set a too-low
number of prototypes, which would presumably lead to many
more misclassifications due to the lack of representation in the
prototypes.

Going forward, we expect to continue to extensively ex-
periment with our PPA calculation strategy, in order to opti-
mize the interactive adaptation process, enabling pathologists
to apply their expertise in a concise and effective way.
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