
Leo Buron*, Andreas Erbslöh*, Zia Ur-Rehman, Christian Klaes, Karsten Seidl, and
Gregor Schiele

Deep.Neural.Signal.Pre-Processor - Towards
Development of AI-enhanced End-to-End BCIs

Abstract: This paper presents a software-based Python
framework for developing future AI-enhanced end-to-end
Brain-Computer-Interfaces (BCI). This framework contains
modules from the emulated analogue front-end and from
neural signal pre-processing for invasive neural applications.
These modules can be assembled into several pipeline versions
for evaluation and benchmarking. The aim of this framework
is to accelerate the development of BCIs due to system-wide
optimizations in order to set the requirements for hardware de-
velopment without prior knowledge on the basis of accuracy
(recall and precision) and latency. In the next step, the pipeline
can be optimised for on-chip and embedded execution.

Keywords: neural signal processing, extracellular record-
ings, artificial intelligence, embedded computing

1 Motivation

Diseases and damage to the central nervous system lead to
social interaction restrictions and reduced quality of life for
those who suffer from them. For example, patients with para-
plegia suffer from a partial to complete loss of mobility.
Brain-Computer Interface (BCI) research has shown that EEG
recordings allow reliable detection of leg and arm movement
ambitions that can be used to control an exoskeleton or hand
prosthesis [1]. However, EEG recordings capture only low
spatial resolution of neural activity at the motor cortex. In-
vasive microelectrode arrays (MEA), like the Utah array, in-
crease the spatial resolution by capturing fine movements like
hand and finger [2]. For real-time determination of the pa-
tient’s movement ambition, neural signal processing (NSP) of

*Corresponding author: Leo Buron, University of
Duisburg-Essen, Faculty of Engineering, Duisburg, Germany,
e-mail: leo.buron@uni-due.de
*Corresponding author: Andreas Erbslöh, University of
Duisburg-Essen, Faculty of Engineering, Duisburg, Germany,
e-mail: andreas.erbsloeh@uni-due.de
Karsten Seidl, Gregor Schiele, University of Duisburg-Essen,
Faculty of Engineering, Duisburg, Germany
Karsten Seidl, Fraunhofer Institute of Microelectronic Circuit and
Systems, Business Unit Health, Duisburg, Germany
Zia Ur-Rehman, Christian Klaes, Ruhruniversity Bochum, Fac-
ulty of Medicine, Bochum, Germany

the electrode signals is necessary. Figure 1 shows the exam-
ple of an end-to-end BCI pipeline for paralyzed patients. This
includes (i) the MEA and tissue as signal source, (ii) the ana-
logue processing as front-end, (iii) the neural pre-processor,
(iv) the neural decoder and (v) the prosthesis to perform the
predicted movement from the neural input. Current experi-
mental platforms digitize the neural input on-chip and trans-
mit the raw data to a workstation telemetrically with data rates
in the upper GB/h. There, the NSP with spike sorting and de-
coding takes place on-/offline with high computational effort.
In order to enable calculations close to the patient, a transfer
of algorithms from processor to embedded and on-chip solu-
tions must take place in future. In this process, a reduction
of the computational complexity and memory space must be
achieved with simultaneously high energy efficiency, low la-
tency, high robustness and high accuracy.

This paper presents the Python frame-
work Deep.Neural.Signal.Pre-Processor (DeNSPP) to build
and evaluate different NSP pipelines for future end-to-end
BCIs with AI support. It allows configurable high-level mod-
elling of each pipeline segment on the overall system perfor-
mance based on defined metrics (see Figure 1). The goals of
this framework are (a) to accelerate the development of digital
neural pre-processors on embedded devices with an optimized
analogue front-end and (b) to explore novel concepts for on-
chip and embedded execution.

In the following, the environment of this framework is
presented by using AI-based spike sorting for neural signal
pre-processing in soft- and future-suitable hardware imple-
mentation in neural devices. In general, spike sorting is used
to (i) detect spikes from the data stream and (ii) create a spike
train that can divide the detected action potentials (spikes) into
different clusters based on the signal shape [3] (see example in
Figure 1). These clusters can be assigned to a neuron type in
the neural decoder, which is used with the recorded local field
potential to predict a movement.

2 Framework structure

This section describes the structure for building pipelines
within this Python framework DeNSPP. This framework will
be made available to the research community in the future
targeting (i) software developers for validating their AI algo-

DE GRUYTER Current Directions in Biomedical Engineering 2023;9(1): 471-474

 Open Access. © 2023 The Author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International
License.

https://doi.org/10.1515/cdbme-2023-1118

471

L. Buron, A. Erbslöh et al., Python Framework: Deep.Neural.Signal.Pre-Processor

On-implant Embedded

Transferring challenge

Processor

MEA/
Tissue

Analogue
Processing

Neural
Pre-Processing

Neural
Decoder

Spike-
Detection

Framing &
Aligning

vu ADC yes/no?

Feature
Extraction

Clustering Correlator

Interpreter

(1) (2)

(3)

(5)

Prosthesis

(1) (2) (3) (4) (5)

(4)

Fig. 1: Neural signal processing pipeline of an end-to-end BCI in order to predict movement from recorded electrode signals of the mo-
tor cortex for paralyzed patients including the mapping of the module implementation on different technology platforms

rithms in the decoding and pre-processing stages, (ii) hardware
developers for optimizing their system design, and (iii) experi-
mental users for evaluating their electrophysiological datasets.
The main selling points of this framework are:
– Standardized module setup for assembling the pipeline
– Emulating the non-idealities from analogue front-end
– Benchmarking different pipelines for the same task
– Reducing the number of hardware iterations
– Hardware-software co-design of AI accelerators
– Evaluating the impact of each module on the pipeline
– Investigating robustness by including artefacts and noise

2.1 Pipeline Setup

The desired pipeline can be built by using pre-defined and
standardized modules. Figure 2 shows the configuration of a
possible spike sorting pipeline. This includes a (a) data loader
(e.g. by using the Quiroga dataset [4]), (b) pre-amplifier,
(c) analogue-digital converter (ADC), (d) digital signal pre-
processing, (e) spike detection, (f) feature extraction, and
(g) clustering solutions.

The data loader prepares the used dataset into a unique
data format within this framework. It converts the bitstream of
raw data from digital values into electrode voltages and pro-
cesses the labelling of spike positions and corresponding clus-
ters for supervised and unsupervised learning. In addition, the
data can be resampled and windowed. For the analogue pre-
amplifiers, the electrical methods (e.g. capacitive coupling,
chopping) with their configurations incl. gain, filter charac-
teristic, noise characteristic and electrical non-idealities (e.g.
output offset) can be set. The ADCs’ (e.g. SAR-, noise shap-
ing SAR-, ΔΣ-ADC) characterics (e.g. incl. sampling rate,
bit-width, and electrical non-idealities like quantization error)

Band-
Pass

Spike
Detection

Feature Extraction

Clustering

Dataset

Pre-Amplifier

Digital Signal Pre-
Processing

Output

NEO

Min-Max FE

Distance-based
Clustering

Quiroga-
Easy1_noise005

SAR

AP

LFP
Band-
Pass

Spike
Train

Configuration of Modules

SAR
 - Bit resolution: 12 Bit
 - Sampling rate: 30 kHz
 - Oversampling rate: 8

Chopper
 - Gain: 40
 - Filtertype: 'bandpass'
 - Frequency: [1Hz - 6kHz]
 - Order: 2nd

Pre-Amplifier
ADC

Chopper

ADCFrame
Gen.

Max.
Align

LFP

Fig. 2: Configuration example of a linear pipeline: (left) module
name - (middle) module properties - (right) used function

are configurable. In digital pre-processing, spatial filters like
Common Average Referencing (CAR) for suppressing arte-
facts and noise, transient filters like bandpass filters for sepa-
rating spikes, and local field potentials from the pre-amplified
signal are provided. In addition, a time delay can be applied
to all filters. At this point, the neural pre-processing stage
with spike sorting starts with the spike detection on the fil-
tered spike activity. There, different detection algorithms with

472

L. Buron, A. Erbslöh et al., Python Framework: Deep.Neural.Signal.Pre-Processor

optional alignment are offered for the frame generation. The
spike frames’ features can be extracted in the next phase.
There, simple geometric, variance-based (e.g. principle com-
ponent analysis, PCA), as well as deep neural network-based
feature extractors are provided. Either the extracted features or
the spike frames themselves can be clustered in the final phase.

−20
0

40

AD
C

ou
tp

ut

0

2000

SD
A

ou
tp

ut

50 52 54 56 58 60
Time t (s)

0
1
2

Sp
ike

 Tr
ai

n

0.00 0.05
Feat. 2

−0.05

0.00

0.05

Fe
at

. 1

0 7 15 23 31
Frame position

−20

0

40

AD
C

ou
tp

ut

Fig. 3: Example Evaluation of the pipeline

After running the pipeline, tools for the evaluation are pro-
vided like in figure 3. It shows the signal output of the ADC,
the spike detection algorithms (SDA) output with its threshold
and the outgoing spike train. In the lower graphs, a 2D-feature
space of a PCA and the corresponding mean waveforms of
the clusters are presented. In addition, the framework offers
a detailed replay of the signals, feature spaces and clusters.
Because of the high-level view of the detailed configuration,
overlaying grid searches can be implemented easily to opti-
mize the whole BCIs’ or neural implants’ performance.

2.2 Using Machine Learning

The pipeline also includes a machine-learning wrapper for a
custom training loop. In figure 4 we show an example of a
trainings-wrapper for an autoencoder. The wrappers’ config-
uration includes the end of the training, the start of the first
inference that is passed to the next module, and the deep learn-
ing (DL) specific configuration like the epochs, batch size, op-
timizer, and loss function. A description of implementing an
autoencoder for denoising in the application of spike sorting
is given in the next section. Due to the modularization, the

trainings-wrapper can be customized for other machine learn-
ing frameworks.

NEO + Max. Align

Autoencoder

Distance-based
Clustering

Quiroga-
Easy1_noise005

Pre-Amp + ADC

Band-Pass

Spike Train

Autoencoder

Training

Module

- Training end: After 100 frames
- Inference start: After 100 frames
- Epochs: 10
- Batch Size: 10
- Optimizer: Adam
- Loss function: MSE

Fig. 4: Configuration example for using an autoencoder in the
digital domain for feature extraction

The implementation of deep neural networks on embed-
ded devices requires resource-reducing techniques like quan-
tization. In addition, the implementation on FPGAs introduces
hardware artefacts. Addressing this issue, we use our exist-
ing open-source ElasticAi-creator tool [5]. It models the in-
troduced hardware artefacts and allows a machine-learning
model designer to train the best model for the FPGA with-
out any prior knowledge about it. Today, our solutions model
the hardware artefacts in software. As soon as a match-
ing hardware-accelerator design is implemented, the software
component will be integrated into the ElasticAi.creator tool al-
lowing a wider audience to benefit from the software-hardware
co-design.

3 Implementing a Denoising
Autoencoder

This section presents one example of implementing a denois-
ing autoencoder (DAE) for AI-enhanced spike sorting. This
DAE performs several tasks at the same time, allowing data
reduction between an ASIC and an embedded device, denois-
ing of input spike frames and feature extraction.

473

L. Buron, A. Erbslöh et al., Python Framework: Deep.Neural.Signal.Pre-Processor

Figure 5 shows in (a) a hardware concept of an end-to-end
spike sorter with an autoencoder for denoising the detected
spike frames with the corresponding signals in (b). In this
pipeline, the ASIC includes the analogue front-end (AFE) with
digitization and spike detection. The detected spike frames are
loaded into the encoder of the autoencoder in order to extract
the features which are transmitted to the FPGA. There, these
features are loaded into the decoder in order to reconstruct the
input spike frames from the encoded features for each record-
ing channel 𝑁 . These denoised frames can be used for feature
extraction and clustering.

n x N n x NAutoencoder

Encoder Decoder

ASIC FPGA

j Nx

ADC

ADC

ADC

Feature
Extraction

&
Clustering

Noisy
Spike Frames

Compressed
Information

Denoised
Spike Frames

AFE SpikeSorter

(a)

0 7 15 23 31
Frame posi ion

−20

0

20

40

Y_
in

Ne work Inpu

−1 0
Fea [1]

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

Fe
a

[0
]

Fea ures

0 7 15 23 31
Frame posi ion

0

20

40

X_
pr

ed

Ne work Ou pu

(b)

0 100 200 300 400 500
Epoch

−20

0

20

40

Im
pr

ov
ed

 S
NR

 (d
B)

min
mean
max

(c)

Fig. 5: Concept of an AI-enhanced spike sorting with denoising
autoencoder: (a) Hardware pipeline for on-chip and embedded
inference - (b) Corresponding signal plots - (c) Improved SNR

We merged the Quiroga data set [4] to four clusters with
5,200 spikes and augmented 2,800 artificial noisy spikes from
the merged data set. Then we processed the data with our emu-
lated front-end like in Figure 5(a). Prior to the first linear layer,
batch normalization is performed. The DAE has five linear lay-
ers with tanh as activation function except for the last layer.
The five 1d-linear layers have 32-20-3-20-32 perceptrons. For
supervised training in software, we split the dataset to 0.8/0.2
test/validation and use the Adam optimizer with MSE loss at a
batch size of 256. The ElasticAI.creator tool is used for quan-

tised training [5] at 12-bit resolution with 9-bit fraction of all
layers.

The results of the training are shown in Figure 5(b,c).
This DAE increases the signal-to-noise ratio (𝑆𝑁𝑅) of the
noisy input spike frames in the range of [−3.18 dB, 2.81 dB]
to [37.48 dB, 42.89 dB]. On average, an 𝑆𝑁𝑅 improvement
of 41.14 dB is achieved. In addition, this setup reduces the
data rate per electrode channel from transferring the raw
data with 240 kbit/s (sampling rate: 20 kHz, quantization: 12-
bit) to 1.688 kbit/s (features of hidden layer with window
length 1.5ms and 50 spikes/s). Compared to transmitting only
the spike frames after spike detection, a data reduction of fac-
tor 142 is achieved.

4 Conclusion

The Deep.Neural.Signal.Pre-Processor Python framework
allows developing and benchmarking signal processing
pipelines in software for different use cases for time series
analyses of electrophysiological recordings. Specific to this
package is that the analogue-front end is emulated in soft-
ware, allowing non-experts to find out their requirements for
the hardware implementation. In addition, different AI models
can be evaluated and optimized for embedded running with
high resource-, energy-efficiency, low-latency approaches and
high robustness against artificial artefacts and noise.

In future, more modules for signal processing and for
neural decoding will be included in this framework in order
to enable research on new system topologies and algorithms
e.g. neural implants for closed-loop stimulation and BCIs for
movement prediction.

References

[1] Al-Quraishi M, Elamvazuthi I, Daud SA, Parasuraman S, Bor-
boni A. EEG-Based Control for Upper and Lower Limb Ex-
oskeletons and Prostheses: A Systematic Review. Sensors
2018;18:10. DOI: 10.3390/s18103342 .

[2] Aflalo T, Kellis S, Klaes C, Lee B, Shi Y, Pejsa K et al. De-
coding motor imagery from the posterior parietal cortex
of a tetraplegic human. Science 2015;348:906–910. DOI:
10.1126/science. aaa5417.

[3] Gibson S, Judy JW, Markovi DC. Spike Sorting: The First
Step in Decoding the Brain. IEEE Signal Processing Maga-
zine 2012;29:124–143. DOI: 10.1109/MSP.2011.941880.

[4] Quiroga RQ. Simulated dataset [Online]. Feb. 2020. Avail-
able: https://figshare.le.ac.uk/articles/dataset/Simulated_
dataset/11897595.

[5] Qian C, Einhaus L, Schiele G. ElasticAI-Creator: Optimizing
Neural Networks for Time-Series-Analysis for on-Device Ma-
chine Learning in IoT Systems. SenSys ’22 2023;;941–946.
DOI: 10.1145/3560905.3568296.

474

https://doi.org/10.3390/s18103342
https://doi.org/10.1126/science. aaa5417
https://doi.org/10.1109/MSP.2011.941880
https://figshare.le.ac.uk/articles/dataset/Simulated_dataset/11897595
https://figshare.le.ac.uk/articles/dataset/Simulated_dataset/11897595
https://doi.org/10.1145/3560905.3568296

