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Abstract: Surgical phase recognition is an important aspect
of surgical workflow analysis, as it allows an automatic analy-
sis of the performance and efficiency of surgical procedures. A
big challenge for training a neural network for surgical phase
recognition is the availability of training data and the large (vi-
sual) variability in procedures of different surgeons. Hence, a
network must be able to generalize to new data. In this paper,
we present an adaptation of a Temporal Convolutional Net-
work for surgical phase recognition in order to ensure the gen-
eralization of the network to new scenes with different con-
ditions on the example of cholecystectomy. We used publicly
available datasets of 104 surgeries from four different centers
for training. The results showed that the network was able to
generalize to new scenes and we obtained recognition results
with accuracy up to 82% on our own six captured surgeries,
performed in a different hospital. This performance is similar
for test data from the hospitals of the training data, suggesting
that the network can well generalize to new surgical rooms and
surgeons. The findings have important implications for the de-
velopment of automated surgical decision support systems that
can be applied in a variety of real-world surgical settings.

Keywords: Phase Recognition, Surgical Phase, Tempo-
ral Convolutional Network, Cholecystectomy, Laparoscopic
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1 Introduction

Surgical phase recognition is an important aspect of surgical
workflow analysis, as it allows automatic analysis of the per-
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formance and efficiency of surgical procedures. Surgical work-
flow analysis is a key technology to connect different techno-
logical advancements in surgery with the aim of increasing the
patients’ safety and the surgical efficiency [14].

Surgical phases are high-level tasks that form an en-
tire surgical procedure, e.g., dissecting the Calots’ triangle to
achieve critical view of safety in laparoscopic cholecystec-
tomy (LC) [6]. With the increasing use of electronic health
records and surgical video recordings, there is a wealth of
data available that can help to improve patient care and be
used to develop automated surgical phase recognition systems
[14, 15].

The analysis of laparoscopic operations is attracting in-
creasing interest in the detection of surgical phases, since they
represent the standard of care in certain routine operations
(e.g., LC) and video collection is easy and can be performed in
a more or less standardized manner [3]. Further, laparoscopy
is challenging due to the different hand-eye coordination and
thus requires a lot of training. Here, an objective assessment
of surgical skills and competencies could improve training and
assistance outcome.

However, the availability of surgical videos for machine
learning (ML) tasks is poor due to time-consuming and labori-
ous annotations [6, 14]. Further, standardized phase definitions
are missing, not only for LC. As a result, only few public avail-
able data for LC exists. The Cholec80 dataset contains videos
of 80 LCs from a single center [13] and has widely been used
for phase recognition training [5, 6, 8]. The Heidelberg Col-
orectal dataset contains 30 videos from three hospitals [14].

The most common network architectures for phase recog-
nition are recurrent neural networks (RNN), temporal convolu-
tional networks (TCN) and transformer models [5, 6, 8]. Most
methods use ResNet50 for (spatial) feature extraction and are
trained and evaluated on the Cholec80 dataset, which is a small
dataset in terms of ML [5, 6, 8, 14]. In addition, no generali-
sation can be made due to the focus on data from only one or
few sources, i.e. one center and/or few surgeons, respectively
[1].

Therefore, model adaptation is essential for fast deploy-
ment in other medical centers [1]. Adapting models to a new
unseen medical center can be done using a finetuning ap-
proach, in which the learning process continues on a relatively
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small number of new samples [7]. Still, the model has to train
on comparatively small datasets.

In this work, we aim to analyze and demonstrate the fea-
sibility and generalizability of TCNs in real-world surgical
settings. We use a standard and adapted TCN approach, both
trained on the introduced publicly available data. We applied
these networks to data from a completely different hospital.
The results of our study could have significant implications
for surgical workflow analysis, as well as for the development
of automated surgical decision support systems.

2 Methods

2.1 Network

We base our work on the TCN-based surgical phase recogni-
tion pipeline TeCNO [4]. The visual features are extracted us-
ing a ResNet50 as backbone and refined within a 2-stage TCN.
As originally described in [4], the ResNet50 is trained frame-
wise without any temporal context. The extracted features of
(𝑇 + 1) frames (𝑥𝑡−𝑇 , . . . , 𝑥𝑡) are then included into the first
layer of stage 1 of the TCN to predict the surgical phase at
time step 𝑡.

Since the temporal progression of a surgery plays an es-
sential role for phase recognition, we integrate the temporal
context as early as possible in the pipeline. To do so, we
extended the input for the ResNet50 to include two images
[𝐼𝑡, 𝐼𝑡−1] at time steps 𝑡 and 𝑡 − 1 instead of the current im-
age 𝐼𝑡 at time step 𝑡 alone. This input is given in the form
(𝑢, 𝑣, 𝑐) with 𝑢 and 𝑣 being the width and height of the frame
and 𝑐 holding the color channels of both sequential images
[𝑟𝑡 𝑔𝑡 𝑏𝑡 𝑟𝑡−1 𝑔𝑡−1 𝑏𝑡−1] .

2.2 Dataset and Training

Our aim is to analyze the possibility of training surgical phase
recognition methods on few public available datasets and ap-
ply these on completely different data, i.e. data from another
center and different surgeons. To achieve that, we used the
available Cholec80 dataset with 80 LC videos (from one center
and 13 surgeons) and the HeiChole dataset with 24 LC videos
(from three clinics). Further, we captured six LC videos at
the Brandenburg Medical School Theodor Fontane, Germany
(MHB). The age of the six patients was 48.5 ± 15.8 yrs, two
were female and four male.

We trained TeCNO and our adapted TeCNO with four dif-
ferent dataset options. The different options with their speci-
fied amount of videos in training, validation and testing set

is presented in Tab. 1. The two options no. 0 are without our
MHB data representing the literature-based analysis and are
only for comparision. They do not count into the four dataset
options.

The selected frame-rate was set to 1 fps. For training, we
used the Adam optimizer with an initial learning rate of 5e−4

and up to 10 epochs for the ResNet50 and an initial learning
rate of 7e−5 and up to 14 epochs for the TCN. The best model
was then selected by its performance on the validation set.

Tab. 1: Dataset partitioning between training, validation and test
sets. In total three options of dataset partitioning were analyzed.
Partitioning No. 0 represents the literature-based analysis without
our own MHB data.

No. Training Data Validation Data Test Data

0a. 40 Cholec80 8 Cholec80 32 Cholec80

0b.
40 Cholec80, 8 Cholec80, 32 Cholec80,
12 HeiChole 3 HeiChole 8 HeiChole

1. 64 Cholec80 16 Cholec80 6 MHB

2.
64 Cholec80, 16 Cholec80,

6 MHB
18 HeiChole 6 HeiChole

3.
No. 2 fine-tuned

1 MHB 3 MHB
with 2 MHB

4.
64 Cholec80, 16 Cholec80,

3 MHB18 HeiChole, 6 HeiChole,
2 MHB 1 MHB

3 Results

The results in terms of accuracy, precision and recall compared
to the annotated ground truth is stated in Tab. 2. As for each
data partitioning a different number of MHB data was put in
the testing set, we performed all training options with all possi-
ble MHB data set arrangements and averaged the results. Thus,
every MHB video was at least once in the testing set.

Overall, the highest results in terms of accuracy and pre-
cision could be achieved by including some of our MHB data
into the training set. The fine-tuning option does not lead to
much better results than just training without our MHB data.
The difference of the overall performance between the initial
and the adapted TeCNO model is statistically insignificant.
However, we noticed that the network performance varied for
individual videos. Beside the increased accuracy and precision
of our adaptation compared to initial TeCNO, we noted that
phase flickering, i.e., an incorrectly predicted phase for only a
single or very few frames, could be reduced. To analyze this,
we use phase plots to visualize which frame was predicted to
which phase, see Fig. 1.
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Tab. 2: The results in terms of accuracy, precision and recall compared to the annotated ground truth data. TeCNO refers to the surgical
phase recognition pipeline introduces in [4] and TeCNOadap refers to our adapted network. The used data partitioning is as described in
Tab. 1.

Method Data Partitioning Acc. Prec. Rec.

TeCNO No. 1 0.670± 0.01 0.669± 0.03 0.652± 0.01

TeCNO No. 2 0.767± 0.01 0.794± 0.02 0.680± 0.01

TeCNO No. 3 0.774± 0.08 0.764± 0.09 0.747± 0.11

TeCNO No. 4 0.804± 0.03 0.809± 0.04 0.729± 0.04

TeCNOadap No. 2 0.764± 0.01 0.794± 0.01 0.702± 0.02

TeCNOadap No. 3 0.765± 0.09 0.764± 0.07 0.721± 0.10

TeCNOadap No. 4 0.791± 0.04 0.804± 0.04 0.732± 0.04

(a) MHB video 1

(b) MHB video 2

(c) MHB video 3

Fig. 1: The phase plots of three MHB videos. For comparison
the accuracies of the single results are (a) Acc. TeCNO = 0.81,
Acc. TeCNOadap = 0.73. (b) Acc. TeCNO = 0.92, Acc. TeCNO-
adap = 0.82. (c) Acc. TeCNO = 0.74, Acc. TeCNOadap = 0.83.

The visualization shows that especially phase 0 - ‘Prepa-
ration’ and phase 1 - ‘Calot Triangle Dissection’ could be rec-
ognized with a high accuracy. The following phases were more
difficult for both models to predict as more phase flickering
is observed. This is true especially for the final stages of the
surgery onwards from phase 4 - ‘Galbladder Packaging’.

Comparing the performance of both methods on the dif-
ferent videos individually, it can be seen that the perfor-
mance of the TeCNO model varies quite heavy in between the
videos (recognition accuracies from 0.74 to 0.92). The adapted
TeCNO model shows lower deviation on the analyzed videos
(recognition accuracies 0.73 to 0.83).

4 Discussion and Conclusion

The results of our study suggest that a TCN-based network
trained on publicly available data with appropriate variability
could adapt to data from a different hospital with different sur-
geons. This demonstrates the feasibility and generalizability of
our approach in real-world surgical settings.

However, it is important to note that only one available
dataset seems not sufficient to train a reliable surgical phase
recognition system. There is a need for larger datasets with
larger variability since there may not be enough variation
among different clinics and surgeons in one single dataset to
account for the nuances of different surgical procedures. Thus,
it can be concluded that more diverse training data is urgently
needed to allow sufficient generalization to unseen data. Fur-
ther, if the diversity of the initial training data is not sufficient,
it seems that fine-tuning with only few own clinical data can-
not compensate this drawback.

In our study, we used 104 videos from four different med-
ical centers. We find that with increasing variation of the train-
ing data the transferability of the models to new unseen data
from a different hospital is increased. Moreover, fine-tuning
the models on a small amount of unseen data from a differ-
ent clinic can increase the performance even further. The re-
sults are then comparable to the literature [4–6], where the
network was evaluated on data from the same origin as the
training data. This suggests that, if the training data are not
diverse enough, a relatively small amount of data from a dif-
ferent clinic or surgeon may be needed to achieve good results
with accuracies up to 82% (vs. accuracy of 81% − 87% for
literature-based analysis of data partitioning No. 0a and 0b).
Aiming for a broad clinical application, however, would mean
that fine-tuning on own clinical data and or even individual
surgeons would not be necessary.

The appearing failures in the phase recognition or oc-
curring discrepancies to the ground truth can have different
causes. On the one hand, the individual way in which a stan-
dard operation is performed slightly varies from surgeon to
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surgeon. On the other hand, the recognition errors are caused
by instruments or instrument manufacturers different to those
used in the ‘foreign’ clinic. Further, the prediction errors occur
in ’pausing’ situations. These faults could be addressed with a
more specific definition of the situations, i.e., the introduction
of a general rest and out-of-body phase could make the detec-
tion more stable and accurate.

In addition, we will investigate deeply the reason of the
higher deviation between the individual recognition results for
TeCNO in comparision to the adapted TeCNO. This will in-
clude a deep comparison of the individual videos where high
differences were observed.

Overall, our findings have important implications for the
development of automated surgical decision support systems.
By using publicly available data from multiple sources and ap-
plying our TCN-based network to data from different hospi-
tals, we can develop more robust and reliable surgical phase
recognition systems that can be applied in a variety of real-
world surgical settings. This would support procedure time
prediction [2], surgical management [12] and continuous sur-
gical education [16]. Further, it could be combined with early
context-sensitive warnings and objective patient assessments
like blood-flow [9, 11], vital sign [10] or hyperspectral tissue
analysis [17].
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