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Abstract: Sleep apnea syndrome (SAS) is a common sleep-
related breathing disorder characterized by recurring cessa-
tions of airflow during sleep. The gold standard for diagnosing
SAS is polysomnography (PSG) which requires the patient to
spend one or several nights in a sleep clinic. A PSG involves
a significant amount of contact-based sensors, which leads to
discomfort and deviations in sleep behavior. In this work, a
contactless, multispectral camera-based approach for the au-
tonomous detection of events of nocturnal airflow reduction is
presented. The detected events are further employed in estima-
tors of sleep diagnostic metrics, such as the apnea-hypopnea
index (AHI) and the SAS stage. The AHI estimation resulted
in a Pearson correlation coefficient of 𝑟 = 0.9993. The SAS
stage estimator correctly predicted the SAS stage for all three
recruited patients.
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1 Introduction

Sleep apnea syndrome (SAS) is a sleeping disorder character-
ized by recurring cessations of airflow during sleep, leading to
a number of complaints, such as daytime sleepiness, concen-
tration problems, and risk of cardiovascular diseases [1]. SAS
is distinguished into two types according to the source of the
cessation, namely Obstructive sleep apnea syndrome (OSAS)
and Central sleep apnea syndrome (CSAS). In OSAS, airflow
cessation is caused by the collapse of the upper airways due
to a physical obstruction [2], as shown in Figure 1. In CSAS,
the cessation is caused by a missing respiratory effort [3]. Two
types of respiratory events are prevalent for both types of SAS,
namely apneas (complete airflow cessation) and hypopneas
(partial airflow cessation) [4]. The primary diagnosis criterion
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Fig. 1: Graphical representation of the upper airway obstruction
leading to obstructive respiratory events [6].

for SAS is the apnea-hypopnea index (AHI), which indicates
the average number of apneas and hypopneas per hour of sleep
[5].

SAS is diagnosed clinically in sleep laboratories via
polysomnography (PSG), a multiparametric measurement in-
volving a high number of contact-based sensors. However, a
PSG involves several issues, such as patient discomfort and
potentially biased results due to unnatural sleep behavior. A
contactless alternative to a PSG has the potential to reduce the
drawbacks of a PSG and furthermore, enable sleep diagnos-
tics outside of sleep laboratories. A very promising direction
for contactless sleep diagnostics are camera-based solutions.
Cameras were first used for manual sleep scoring [7]. With
the development of computer vision, automated methods have
been developed. These can be divided into: (1) methods based
on the analysis of respiratory motion [8–12]; and (2) methods
based on the analysis of respiratory airflow [13–16].

In this work, an AHI estimation method based on respira-
tory airflow and multispectral remote photoplethysmography
(rPPG) analysis is proposed. The goal of this study is to de-
velop a subject-based model for AHI estimation with the dif-
ferentiation among apneas and hypopneas. The AHI estima-
tion is to be used for SAS stage classification in patients. This
work is a continuation of a previously published study [13].

2 Methods

Sleep diagnostics requires data collection in the nighttime
without additional sources of visible light. For this reason, a
multispectral imaging device with sensors in the near-infrared
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Fig. 2: Measurement setup in the sleep laboratory.

Tab. 1: List of features extracted from the multispectral image data
and physical patient data.

List of extracted features

centroid maximum
mean median
min distance
entropy fundamental frequency
human range energy interquartile range
absolute difference mean difference
mean absolute deviation neighbourhood peaks
peak-to-peak distance power bandwidth
RMS skewness
slope spectral distance
spectral kurtosis spectral positive turning points
spectral spread sum of absolute difference
wavelet entropy gender
aggregated age aggregated height
aggregated weight aggregated BMI

(NIR) and far-infrared (FIR) spectrum is used. For enhancing
the measurement in the NIR spectrum, narrow-band NIR light-
emitting diodes (LED) are employed. A detailed description of
the measurement system is provided in [13, 17]. For the data
collection, a patient study is conducted in the sleep laboratory
of the University Hospital Essen. Three symptomatic patients,
which were referred to the sleep laboratory with a suspected
SAS for an initial diagnosis are enrolled in the study. The pa-
tient data sample is presented in Table 2. A PSG is performed
with all patients and serves as a reference for the camera-based
measurement. The measurement setup in the sleep laboratory
is shown in Figure 2.

The collected multispectral image data is processed into
three time-series signals: (1) rPPG signal at a central wave-
length of 780 nm obtained from the forehead; (2) rPPG sig-

nal at a central wavelength of 940 nm obtained from the fore-
head; and (3) respiratory airflow signal in the FIR spectrum
obtained from the subnasal region [13]. The extracted time-
series signals are firstly preprocessed, then data snippets con-
taining respiratory events are extracted and labeled with refer-
ence to the PSG data and finally fused in a respiratory event
database. The extracted data snippets are fixed to a length of
ten seconds. Events that last longer than ten seconds are di-
vided into multiple ten-second-long snippets. The fused data is
then fed into a feature extraction stage in which 30 individual
features are calculated from each spectral signal. A list of the
extracted features is provided in Table 1. The features serve
as inputs to a random forest classifier (RFC), which is mod-
eled to classify among normal breathing intervals, apneas, and
hypopneas. The training of the RFC model is performed via
leave-one-subject-out cross validation (LOSOCV). The hyper-
parameter tuning of the RFC is shown in Table 3.

For the AHI estimation, a linear regression (LR) model
with a LOSOCV is trained. The model is built with three fea-
tures: (1) the number of detected apnea snippets; (2) the num-
ber of detected hypopnea snippets; and (3) the measured sleep-
ing duration. The equation of the resulting LR model is given
in Equation 1. The coefficient 𝛽0 represents the offset, while
the coefficients 𝛽1, 𝛽2, and 𝛽3 are weights of the input features
𝑥1, 𝑥2, and 𝑥3. The estimated AHI score is used to predict the
SAS stage based on the following criteria: (1) SAS existent if
AHI > 15; (2) SAS nonexistent if AHI ≤ 15.

𝐴𝐻𝐼𝐸𝑠𝑡(𝑥1, 𝑥2, 𝑥3) = 𝛽0 + 𝛽1 · 𝑥1 + 𝛽2 · 𝑥2 + 𝛽3 · 𝑥3 (1)

3 Results

The subject-wise results of the three-class respiratory event
classification among normal breathing, hypopneas, and apneas
are presented in form of a confusion matrix in Figure 3. By
reducing the task into a two-class classification problem (by
merging apneas and hypopneas into a single class), an overall
accuracy of 0.82, a sensitivity of 0.73 and a specificity of 0.92
are achieved.

The results of the AHI estimator based on the LR model
from Equation 1 and the results of the SAS stage estimation are
presented in Table 4. The AHI estimation resulted in a Pearson
correlation coefficient of 𝑟 = 0.9993. The SAS stage estima-
tion is correct with all three subjects. A comparison with the
SAS stage classification results obtained in related studies is
presented in Table 5. Four related studies did not obtain an
SAS estimation because the study was either related to infant
apnea [14], included only healthy control subjects [15], or did
not involve an SAS estimation [8, 16].
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Tab. 2: Overview of the patient sample included in the study.

Pat. Gender Age (years) Height (cm) Weight (kg) BMI AHI ODI Sleep time (h) Recorded sleep time (h)

1 male 27 188 105 29.70 14.50 9.4 5.45 4.86
2 male 48 180 98 30.20 11.93 33.7 2.85 1.64
3 female 51 172 85 28.70 29.00 34.6 6.23 3.61

Fig. 3: Confusion matrix of subject-based respiratory event classification (NB - normal breathing; H - hypopnea; A - apnea).

Tab. 3: List of hyperparameters set for the random forest classi-
fier.

Hyperparameter of random forest classifier

n_estimators 100 criterion gini
max_depth 8 min_samples_split 2
min_weight_fraction_leaf 0.0 min_samples_leaf 10
max_features sqrt max_leaf_nodes none
min_impurity_decrease 0.0 bootstrap true
oob_score false n_jobs none
random_state 90 verbose 0.0
warm_start false class_weight none
ccp_alpha 0.0 max_samples none

Tab. 4: Regression and classification results for AHI score and
SAS stage estimation.

Patient AHI𝑇𝑟𝑢𝑒 AHI𝐸𝑠𝑡 SAS𝑇𝑟𝑢𝑒 SAS𝐸𝑠𝑡

1 14.5 13.9 no no
2 11.9 13.0 no no
3 29.0 20.9 yes yes

Tab. 5: Performance comparison with related studies.

Study Study size SAS estimation accuracy

Alić et al. 3 1.00
[9] 21 0.90
[10] 41 0.83
[11] 50 0.98
[12] 59 0.81

4 Discussion

The results presented in this work and in the publications men-
tioned in the literature overview in the introduction show that
camera-based systems have the potential to be used for sleep
diagnostic purposes. Nevertheless, there are still several im-
portant questions that need to be addressed and further inves-
tigated in the future. The majority of studies in the published
literature on camera-based sleep diagnostics still lack a deeper
classification of respiratory events, which is significant for es-
tablishing a correct diagnosis and selecting a treatment plan
for SAS patients. A correct differentiation based on the source
of the respiratory event (central, obstructive, or mixed) com-
bined with the correct estimation of the amplitude of the event
(apnea or hypopnea) is important for correct clinical care [3].

Approaches that analyze respiratory motion can primar-
ily detect central events due to the lack of respiratory effort.
However, they still lack the possibility of detecting obstructive
events, since respiratory effort remains present in obstructive
events. Regarding the amplitude of the event, the approaches
mentioned in the literature overview predominantly categorize
hypopnea and apnea as a single class. On the other hand, ap-
proaches that analyze respiratory airflow have the issue of dif-
ferentiating between the source of the event. In order to dif-
ferentiate among the source of the event, it is necessary to ex-
amine the measured airflow signal more closely and analyze it
based on attributes that physicians use in manual PSG classifi-
cation. Another interesting aspect is the use of rPPG signals in
respiratory event detection. Besides [13], no other publication
is obtained that uses rPPG signals for this purpose. However,
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several works have already proven that a robust respiration rate
detection via rPPG is possible [18]. Furthermore, in the feature
selection process in this study, it is noticed that features from
the rPPG signals contribute to the classification task equally
well as the FIR airflow signal. This shows that the use of NIR
rPPG signals in nocturnal respiratory event detection is an ap-
proach that needs to be further investigated.

In this preliminary study, a correct SAS stage classifica-
tion is achieved for all three enrolled patients. However, it must
be noted that this sample is not large enough to deliver reliable
conclusions. The achieved results present a promising starting
point for a larger patient study.

5 Summary and Future Work

This work demonstrated a multispectral camera-based ap-
proach for AHI estimation and OSA stage classification on
a small dataset of symptomatic patients. By a combined ap-
proach with rPPG analysis in two separate NIR spectra and a
respiratory airflow analysis in the FIR spectrum, it is possible
to differentiate among apneas, hypopneas, and normal breath-
ing and use the detected events for a subject-based estimation
of the AHI score and the SAS stage.

After obtaining promising initial results, the collection of
a larger dataset of symptomatic SAS patients and healthy con-
trol subjects is currently in progress. By obtaining more data,
especially from patients who experience central and mixed ap-
neic events, it will be possible to investigate whether both the
source and the amplitude of respiratory events can accurately
be determined via remote camera-based measurements.
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