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Abstract: Developing autonomous endovascular robotic 

systems requires physical testbeds to test control algorithms. 

Typically, such testbeds comprise of several hard- and 

software components along with a way of having these 

components communicate with each other. Building such a 

testbed is a multidisciplinary task which can be beyond the 

scope of expertise for research groups. The goal of this work 

is to facilitate setting up such testbeds in two ways: First, we 

propose a testbed architecture that allows to develop tracking, 

control and instrument manipulation systems separately by 

utilizing the ROS2 communication protocol. Secondly, we 

present a reliable yet straightforward to implement tracking 

algorithm for endovascular instruments that is built using only 

open-source software packages. The tracking algorithm is 

evaluated using both video camera and x-ray imaging and is 

found to meet the requirements for real time control 

algorithms. Furthermore, we show an example of the proposed 

modular testbed architecture as it is used in our lab. Both the 

modular testbed architecture and the open-source tracking 

algorithm may serve as helpful building blocks for other 

researchers in the field seeking to evaluate their control 

algorithms on physical testbeds. 
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1 Introduction 

Vascular diseases, especially ischemic heart (16%) and 

cerebrovascular disease (11.2%), are the leading causes of 

death worldwide [1]. The endovascular intervention is a 

minimally invasive surgical method to diagnose and treat these 

diseases. During this type of intervention thin and flexible 

instruments, i.e. guidewire and catheter, are navigated through 

the patient’s vascular system to the site of the lesion under 

medical imaging, where the treatment is performed. 

Navigating through the vascular system is a complex task that 

exposes the surgeon to radiation and requires the usage of 

contrast agent to guide the surgeon through the vascular 

system. 

Current research aims to automate the navigation task in 

order to enhance patient safety and allow the physicians to 

focus on the actual treatment while reducing the required 

dosage of contrast agent and radiation [2–4]. Yet, the 

development and testing of automated guidewire and catheter 

navigation in physical testbeds is challenging as it requires 

solving multiple tasks at once: Receiving feedback about the 

position of the instruments, e.g. by using the unfiltered 

medical image or tracking the instrument position, 

determining an appropriate navigation manoeuvre to move the 

instruments closer to the target position and executing this 

manoeuvre. 

A frequently used approach to tracking guidewires is to 

represent the guidewire with a B-spline and then update the 

position of its control points at every step by optimizing an 

energy function building both on image features and 

mechanical plausibility [5–7]. Vandini et al. [8] search for 

image features that possibly represent guidewire segments and 

combine them to find the guidewire. In recent years 

convolutional neural networks have been successfully used to 

extract the position of guidewires from fluoroscopy images 

[9–11]. For application in control algorithms a sufficiently 

high tracking frequency and a low tracking induced delay are 

necessary. Clinicians typically use an image frequency of 4-

10Hz while the stated research is able to process images within 

50-175ms. These values can be used as a baseline requirement 

for tracking algorithms in real time control loops for 

autonomous guidewire navigation. Implementation and 

runtime optimization of such professional solutions can be a 

challenging task, however, it might not be necessary during 

early stages of development of endovascular robotic systems. 

In these stages facile solutions and interfaces that allow easy 

replacement of each part of the testbed are required. 

The contribution of this paper is twofold: We present an 

architecture for a testbed using the ROS2 [12] interface which 
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allows decentralized and wireless communication between the 

different components of the testbed. This allows to solve each 

task independently and substitute between different solutions, 

e.g. switching to a state-of-the-art tracking solution when the 

stage of animal or clinical trials is reached. Secondly, a 

tracking algorithm is suggested that is solely based on open 

source packages and yet meets the stated performance 

requirements and therefore allows in-vitro development and 

testing of navigation algorithms and instrument manipulators. 

2 Method 

2.1 Testbed Architecture 

The testbed consists of a transparent phantom of a vascular 

system, which is either placed inside in an x-ray imaging 

system (Artis Zeego, Siemens Helthineers) or mounted with a 

camera, a laptop with a 12-core, 2.6GHz processor and image 

processing software, a guidewire manipulator, and a joystick. 

The communication between the different elements is 

performed through the ROS2 interface. This also allows us to 

place all control devices inside the secure control room 

omitting exposure to any radiation. The setup is shown in 

Figure 1. The ROS2 architecture is built using the following 

nodes: 

 The feedback node, orange, receives the live webcam or 

fluoroscopy images and obtains tracking points of the 

guidewire. Those tracking points are then published to the 

feedback topic.  

 The target node, green, publishes the target position for 

the guidewire tip to the target topic. The target position 

can be chosen in the displayed image. 

 The control node, yellow, subscribes to both the target 

and the feedback topic and determines the control signal 

which is the desired translational and rotational velocity 

for the guidewire. The control message is published to the 

action topic for each incoming feedback message.  

 The manipulation node, blue, subscribes to the action 

topic and moves the guidewire accordingly. 

This architecture allows to easily substitute solutions for the 

different nodes e.g. replacing the manually controlled joystick 

in the control node with an autonomous control algorithm. 

Analogously, feedback and manipulation node can be replaced 

by a simulation. Additionally, multiple control nodes with 

different priorities can be utilized, e.g. to allow manual 

override via the joystick while navigating autonomously.  

2.2 Tracking Algorithm 

Our novel guidewire tracking algorithm is placed inside the 

feedback node to retrieve guidewire tracking points from the 

image. The tracking algorithm uses the standard image 

processing functionalities of the publicly available Open CV 

[13] package. Instead of relying on complex algorithms our 

approach builds on manual parameter tuning utilizing two 

facts: First, the endovascular instruments are inserted at a static 

position which is known during the intervention. Second, 

endovascular instruments are slender devices, i.e. 𝑙𝑧 ≫ 𝑙𝑟, 

where 𝑙𝑧 is the straight length and 𝑙𝑟 is the radius of the 

guidewire.  

Before the tracking loop is started, brightness and contrast 

of the incoming video stream can be manually adjusted. This 

allows to obscure the edges of the vascular tree and to enhance 

the visibility of the guidewire, when using a camera image. 

Likewise the thresholds for the edge detection can be hand 

tuned. Furthermore, the insertion area is manually marked (red 

rectangle in Figure 2) and the coordinate system for the 

position of the guidewire is specified. In our setup the phantom 

Figure 1: Phantom of vascular system with guidewire manipulator 

under X-ray imaging (top), ROS topics (center) and guidewire 

tracking with joystick control pad in control room (bottom). A 

filled circle represents messages being published to the topic 

while a ring represents a subscription   
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of the vascular system is placed inside the x-z-plane with the 

guidewire pointing into the direction of the z-axis. This 

corresponds to the coordinate system of the x-ray imaging 

system. To track the guidewire, the following steps are 

performed:  

1. Transformation to grayscale image and adjustment of 

brightness and contrast as specified. 

2. Extracting the  edges of the guidewire into a binary image 

using the Canny-Edge-Detector [14]. 

3. Applying a closing operation (consecutive usage of 

dilation and erosion filters) to fill up the edge-contours of 

the slender guidewire to achieve an enclosed contour. 

4. Retrieving the shapes and a polygon approximation of all 

enclosed contours in the binary image. 

5. Iterating through the approximation points of all contours 

until the guidewire is found as the contour with points 

inside the insertion area. 

6. Finding the tip of the guidewire by measuring the distance 

of both edges starting from the edge of the insertion area 

in positive coordinate direction. The tip is found as the 

point where both edges meet under equal distance.  

7. Retrieving and publishing tracking points that represent 

the centreline of the two edges of the guidewire. 

Figure 2 displays the successful retrieval of the guidewire from 

the fluoroscopy image. In evenly illuminated images it was 

also found possible to substitute steps 2 and 3 by a threshold 

filter. Setting all binary image values on the lower edge of the 

insertion area to zero after step 3 can additionally assert that a 

contour approximation point is placed inside the insertion area. 

Substituting step 6 by using the angle between the edges of the 

polygon approximation or adding a correction for guidewire 

bending during distance calculation were found to be less 

efficient. 

2.3 Experiment Setup 

We validate our setup and evaluate the tracking algorithm by 

manually navigating through all branches of the vascular 

phantom using the joystick controller, as displayed in Figure 2, 

resulting in images with a variety of guidewire positions and 

lengths. During this task the delay of the image processing 

from retrieving a new image until returning the tracking points 

and the frequency of incoming tracking signals is measured. 

Also the number of time steps, where the algorithm is not able 

to retrieve a guidewire position from the image is counted. The 

experiment is conducted using both camera and x-ray imaging. 

Additionally, the experiment is repeated placing the vessel 

phantom on top of an anatomic phantom in x-ray imaging to 

assess the capability of the tracking algorithm in a setup closer 

to the clinical application. 

3 Evaluation 

The tracking algorithm achieves an average processing delay 

of less than 50ms under both camera and x-ray imaging which 

is below the baseline of current research. The achieved control 

frequency matches or even exceeds the stated requirements of 

4-10 Hz. All values are gathered in Table 1. 

Table 1: Average values for control frequency and delay, and 

percentage of time-steps where the guidewire was not found 

 Control 

Frequency 

Processing 

Delay 

Guidewire not 

found 

Camera 

Tracking 

17Hz 41ms 0.0% 

x-ray Tracking 10Hz 25ms 0.7% 

Figure 2: Fluoroscopy image with additionally displayed vessel 

tree (top) and processed image with tracked guidewire 

(bottom).  
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While the guidewire was tracked in the camera image in 

all time steps, there were a few time steps where the guidewire 

could not be tracked or the guidewire tip was not found 

correctly using the fluoroscopy image input. This was due to 

rapid guidewire movements under relatively low image 

frequency which resulted in a smeared guidewire. In the 

experiment an imaging frequency of 30p/s was used. The 

failure rate increases with a lower image frequency. 

The tracking algorithm failed to distinguish the guidewire 

from the background when the vessel phantom was placed on 

top of the anatomic phantom, due to equal illumination of 

guidewire and skeletal structures under x-ray imaging. The 

tracking algorithm also fails to extract the correct guidewire 

tip if the guidewire overlaps itself or is kinked by 

maloperation. 

4 Discussion 

A testbed for endovascular robotic systems was presented. The 

utilization of the ROS2 communication protocol divides the 

navigation task into the subtasks of receiving a feedback about 

the instruments position, finding an appropriate manoeuvre 

and executing this manoeuvre. This allows researchers to 

focus on each individual task during development while 

having the ability to easily replace different solutions for all 

other components.  

Furthermore, a tracking algorithm for guidewires was 

presented that can be implemented straightforwardly using 

open source software packages. It meets the requirements for 

application in navigation control loops and reliably tracks the 

guidewire in two-dimensional vascular phantoms.  

The testbed allows researchers to evaluate control 

algorithms or robots for endovascular instruments by replacing 

the respective ROS2 node with their solution. Algorithms that 

successfully navigate through the presented physical testbed 

are promising candidates for testing in phantoms with higher 

complexity or even animals. The tracking algorithm can then 

easily be replaced by a professional solution.  
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