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Abstract: Acquiring reproducible ultrasound images of high
quality is challenging in ultrasound imaging. While physicians
can rely on their experience, robot-assisted systems must be
able to automatically align the ultrasound probe with the cor-
rect orientation. This paper describes a method to align the
central axis of the probe to the surface normal at the point of
contact. This is done by analyzing the area of ultrasound vol-
umes directly below the transducer of the probe. A convolu-
tional neural network is trained to estimate the inclination of
the probe orientation towards the direction of the surface nor-
mal. Experiments on two different phantoms indicate that the
mean absolute angle error between the estimated rotation and
the ground truth surface normal are 5.0± 2.8∘. The method is
able to keep the probe-surface contact continuous and the re-
sults indicate that the method is invariant to anatomical struc-
tures.
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1 Introduction

Robot guided ultrasound (US) enables automatic US scanning
with high accuracy and reproducibility [1]. The image quality
mainly depends on the contact force [2] as well as the ori-
entation of the US probe [3]. It is concluded in [4] and [5]
that an orientation along the normal of the surface leads to
improved image quality. For that reason in [6] a method for
an automatic robot-assisted US system was presented, which
combines force estimations as well as real-time US images to
determine the optimal probe orientation. The aim was to align
the central axis of an US probe, which is attached to the end-
effector of a robot, with the tissue surface normal. Although
promising results were achieved, some limitations remain: At
every position a fan motion has to be performed to orient the
probe correctly in the out-of-plane direction. When an US scan
consisting of many points is required, this may result in a long
treatment time, reduced patient comfort and thus limit the ap-
plicability.
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In this paper, we present a one step method to align the
central axis of an US probe attached to a robot approximately
normal to the surface of the scanned tissue on the basis of 3D
US volumes. A Convolutional Neural Network (CNN) esti-
mates the angle towards the surface normal such that the robot
can correct the probe orientation immediately.

2 Methods

Following, the data acquisition and preparation as well as the
execution and evaluation of the experiments is described.

2.1 Data Acquisition

The acquisition of training data is done with a KUKA LBR
iiwa 7 R800 robot and a Philips Epiq 7 US station with the
XL14-3 probe at different locations on two leg phantoms and
one torso phantom (see Figure 1 A-C). US volumes are ac-
quired at six different locations on the torso phantom, at four
different locations on the transparent leg phantom and at two
locations on the red leg phantom. First, the probe is aligned
by hand at a chosen location. The probe has full contact to the
phantom surface and the orientation is approximately aligned
to the surface normal though no ground truth is known. To ac-
quire data with different contact angles at the contact point, in
a second step, the probe orientation is varied in a range from
-15∘ to 15∘ at a step size of 3∘ as visualized in Figure 2. This
is done by rotating the probe around the 𝑡𝑐𝑝𝑦- and 𝑡𝑐𝑝𝑥-axis
of the tcp-frame, which is located in the center of the probe
as shown in Figure 2. Δ𝜃IP and Δ𝜃OP represent the angles by
which the probe must be rotated to be aligned with the ap-
proximate surface normal in the in-plane and out-of-plane di-
rections, respectively (see Figure 2). First, the probe is rotated
around its 𝑡𝑐𝑝𝑦-axis by a corresponding angle of Δ𝜃IP while
Δ𝜃OP = 0∘. Afterwards, the probe is rotated around its 𝑡𝑐𝑝𝑥-
axis by a corresponding angle of Δ𝜃OP while Δ𝜃IP = 0∘. In
addition, the probe pressure force onto the phantom surface is
varied for each probe orientation. The probe is moved in 2 mm
steps in the 𝑡𝑐𝑝𝑧-direction until a depth of 10 mm is reached.
This varies the range of contact forces that occur with the aim
of achieving a higher data variability. During this process, the
US data as well as the force and position data provided by the
robot are stored.
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Fig. 1: Phantoms for data acquisition and validation. (A): Torso
phantom. (B), (C): Leg phantoms. The validation scans are
marked with black tape. (D): US probe attached to robot end-
effector while doing a validation scan at the rib.

Fig. 2: For data acquisition, the probe orientation was varied be-
tween -15∘ and 15∘ in steps of 3∘.

2.2 Data Preparation

After acquisition, the data is prepared for CNN training. The
proposed approach for estimating the required US probe rota-
tion angles Δ𝜃IP and Δ𝜃OP is based on both forces and images.
Depending on the area of interest, US volumes can contain
highly different anatomical structures. To get an approach that
is invariant to this structural variability, we propose to not use
the whole US volume but only the area directly under the US
probe. This transducer area, marked in Figure 3, has no in-
formation about the anatomical structure but about the probe-
surface contact. Transducer area patches are cut out from the
US volumes at a depth of 30 px as visualized in Figure 3.
In a second step, these patches are resampled into a size of
30 px×30 px×30 px. To extend the available data set, random
intensity rescaling is applied to the patches so that 12,548 data
samples are available for training. The measured forces 𝑓𝐸

are given in the end-effector coordinate system. The forces 𝑓𝐸
are transferred into the US probe coordinate system to get the
forces 𝑓𝑃 by applying the transformation matrix 𝐸𝑇𝑃 which is
known from the CAD model of the probe holder (see Figure 1
(D)). Using the probe pressure force 𝑓𝑃 for angle estimation is
an important aspect since the US image quality can be affected
by both pressure and orientation due to the soft and flexible

Fig. 3: A slice of a 3D US volume acquired at a probe orientation
of Δ𝜃IP = 0∘, Δ𝜃OP = −12∘. The transducer and the non-contact
artifact are marked.
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Fig. 4: Visualization of the CNN architecture. It gets an US volume
and a force vector as input and predicts the required rotation an-
gles Δ𝜃IP and Δ𝜃OP.

skin of humans or phantoms. In addition, a rough estimation
for the rotation direction 𝐷𝑇 is calculated by determining the
US volume moment 𝑀 (see eq. 1).

𝑀 =
∑︁
𝑥,𝑦,𝑧

𝑥𝑖𝑦𝑗𝑧𝑘𝐼(𝑥, 𝑦, 𝑧) (1)

Here, 𝐼(𝑥, 𝑦, 𝑧) is the US volume intensity at position (𝑥, 𝑦, 𝑧).
As can be seen in Figure 3, volumes acquired at a suboptimal
probe orientation contain a shadow artifact that extends over
the entire depth of the US volume. Due to that, the volume
moment is shifted into the opposite direction. According to
this, the parameter 𝐷𝑇 is set to -1 or 1 depending on the shift
direction of the volume moment for the in-plane and out-of-
plane angles of the US probe. It should be noted that 𝐷𝑇 could
also be received by labeling the data, determining the volume
moment is done to avoid the time-consuming labeling process.

2.3 Convolutional Neural Network

The required probe rotation is estimated using a two-
dimensional Regression CNN visualized in Figure 4. The
CNN consists of nine convolutional layers with relu activa-
tion function, two max-pooling layers and four fully con-
nected layers with sigmoid activation function. In the output
layer a linear activation function is used. The CNN gets a
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30 px×30 px×30 px sized volume and the force vector 𝑓𝑃

as input. Since the CNN used is a two-dimensional model, the
information along the depth axis of the US volume is handled
as 30 different channels inside the CNN. Output of the model
are the angle predictions Δ𝜃IP and Δ𝜃OP for the required rota-
tion of the US probe. Training is performed using the rmsprop
optimizer with a batch size of 128, validation split of 10 %,
early stopping, exponential learning rate decay and a custom
loss function, given in eq. 2.

𝐿𝑜𝑠𝑠 = 𝐿𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 + 𝐿𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (2)

Here, 𝐿𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 (see eq. 3) calculates the difference between
the predicted US probe rotation and the ground truth consid-
ering the rotation matrices 𝑅𝑃 and 𝑅𝑇 using the Frobenius
norm.

𝐿𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = ||𝑅𝑃 −𝑅𝑇 ||𝐹 (3)

The rotation matrix prediction 𝑅𝑃 is generated using the pre-
dicted angles Δ𝜃IP and Δ𝜃OP while 𝑅𝑇 is known from the
data acquisition. By using 𝐿𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (see eq. 4), predictions
are penalized even stronger if the direction of the predicted
rotation is wrong.

𝐿𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =

{︃
1, if 𝐷𝑃 ̸= 𝐷𝑇

0, otherwise
(4)

Here, 𝐷𝑃 =
Δ𝜃IP; OP
|Δ𝜃IP; OP| denotes the rotation directions of the

predicted angles Δ𝜃IP and Δ𝜃OP. With this, the CNN is forced
not to give rotation predictions that point into the opposite di-
rection as required. Note, that 𝐷𝑇 and 𝐷𝑃 are only used for
training. When the CNN is used for prediction, these calcula-
tions are not performed.

2.4 Phantom Experiments

For validation , a phantom study is performed where several
automated US scans at two different phantoms are executed.
For each scan, the probe is positioned by hand at a start posi-
tion on the phantom and the following scanning procedure is
executed as shown in Figure 5. First, the contact force of the
probe is adjusted to be in a range between 3 and 5 N by adapt-
ing the probe pose in the 𝑡𝑐𝑝𝑧-direction (see 1 in Figure 5).
Afterwards, an US volume is acquired and the rotation angles
to align the probe are estimated by the CNN. If the absolute
values of the predicted angles are greater than 3∘, the probe
is rotated appropriately (see 2 in Figure 5). Otherwise, the
probe orientation remains constant. This threshold is chosen
due to the step size of 3∘ in the training data acquisition. In
the third step, the next path point is approached by moving the
probe 5 mm into the 𝑡𝑐𝑝𝑥- direction (see 3 in Figure 5). In to-
tal, two validation trajectories on the torso phantom and one on

Fig. 5: Procedure of validation scans: The probe 𝑡𝑐𝑝𝑧-axis is auto-
matically aligned with the surface normal while scanning a curved
tissue. 𝜃𝑑𝑖𝑓𝑓,𝑡𝑜𝑡 is the difference between the surface normal at
the start and the end position.

the transparent leg phantom are chosen (see black tape in Fig-
ure 1). At each location, five scans are performed. To evaluate
the accuracy of the orientation alignment, the surface normals
of the corresponding paths are determined by a laserscan done
with a Artec Leo laserscanner. The path is then divided equally
into 24 areas for the scans on the torso phantom (rib and ab-
domen) and in 16 areas for the scan on the leg phantom. The
mean surface normals of these areas are used to calculate the
absolute angle error to the probe’s 𝑡𝑐𝑝𝑧-axis for each position
of the trajectory.

3 Results

For evaluation, the absolute angle errors measured between
the mean surface normals and the 𝑡𝑐𝑝𝑧-axis of the US probe
are investigated. The measured in-plane and out-of-plane an-
gle errors are summed and considered jointly. In Figure 6, the
absolute angle errors of all five iterations of the three valida-
tion scans are visualized. The mean absolute angle errors over
all experiments is 5.0∘ ± 2.8∘ and in 95 % of the probe po-
sitions the angle error is ≤ 9.7∘. However, the results indi-
cate that the accuracy on the leg phantom is higher than on
the torso phantom. In the leg experiments, the mean angle er-
ror is 3.8∘ ± 2.9∘ while the error on the rib and abdomen is

Fig. 6: Absolute angle error results for rib, abdomen and leg ex-
periments. In each location five iterations are performed. The sum
of the in-plane and out-of-plane errors are visualized.
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5.3∘ ± 2.7∘ and 5.5∘ ± 2.6∘, respectively. Altogether, during
the scans the probe had to rotate for 61.8∘, 30.7∘ and 74.2∘ in
the rib, abdomen and leg experiments, respectively. The robot
was able to hold the probe in full surface contact the whole
time during all experiments. Outliers, meaning probe positions
where the angle error is quite high, could always be compen-
sated in the following probe position.

4 Discussion

The goal of this work is to automatically align the central 𝑡𝑐𝑝𝑧-
axis of an US probe approximately normal to the surface of the
scanned tissue and to ensure high quality US volumes. Thus,
curved surfaces can be scanned automatically without know-
ing the surface geometry. The results show that trajectories
at unknown curved surfaces can be driven automatically by
an US robot. The proposed method is applicable even in ar-
eas where orientation adaptions of more than 70∘ are required.
The overall mean angle error is 5.0∘ ± 2.8∘. Since the probe
orientation is only adapted if the estimated rotation is ≥ 3∘,
this can be considered as high accuracy. This threshold is set
due to the fact that the smallest rotation angle in the training
data is 3∘ and thus, correct estimations by the CNN for smaller
angles are not expectable. In addition, although the method is
validated by measuring the error between the surface normal
and the probe orientation, the CNN is not trained to align the
probe to the surface normal. When acquiring the training data,
the ground truth for the optimal probe orientation was set by
hand. Thus, the CNN estimates the required rotation to reach
US volumes without any non-contact artifacts as can be seen
in Figure 3. This can be achieved even if the US probe is not
optimally aligned to the surface normal, thus, errors are ex-
pected when comparing the probe orientation and the surface
normal. This effect even increases at higher pressure forces
which makes it necessary to use force information for an ac-
curate rotation angle estimation. Compared to results from [6]
the performance of the methods are comparable. Though in
contrast to [6], our approach is based on 3D US images so that
it is not necessary to perform a fan motion pattern for probe
alignment. Another benefit of the proposed method is the in-
variance to the anatomical area of interest. The results show
that the CNN is generalized for the rib, abdomen and leg ar-
eas where the anatomy is highly different. This was achieved
by using the transducer area of the US volumes instead of the
whole US volume. These anatomical areas of interest were,
however, part of the training data set, so the method was not
tested on completely unknown areas of interest.

5 Conclusion and Outlook

Robot guided US is becoming more interesting for a variety
of clinical applications. Automatic US probe alignment, how-
ever, remain a challenging task. In this paper, a novel one step
approach for US probe alignment based on 3D US images and
force information is proposed. A CNN is trained that estimates
the required rotation angles to align the US probe approxi-
mately normal to the surface. The method is validated in a
phantom study where a high mean accuracy of 5.0∘ ± 2.8∘

could be achieved. However, there is still potential for im-
provement. The training data set should be extended with sam-
ples at rotation angles less than 3∘ as well as data from further
areas of interest to extend the data variability. In further stud-
ies the method will be tested on unknown phantom structures
as well as on in-vivo data to investigate the usability of this
approach.
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