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Abstract: Radiographs are a versatile diagnostic tool for the
detection and assessment of pathologies, for treatment plan-
ning or for navigation and localization purposes in clinical in-
terventions. However, their interpretation and assessment by
radiologists can be tedious and error-prone. Thus, a wide va-
riety of deep learning methods have been proposed to support
radiologists interpreting radiographs.
Mostly, these approaches rely on convolutional neural net-
works (CNN) to extract features from images. Especially for
the multi-label classification of pathologies on chest radio-
graphs (Chest X-Rays, CXR), CNNs have proven to be well
suited. On the Contrary, Vision Transformers (ViTs) have not
been applied to this task despite their high classification per-
formance on generic images and interpretable local saliency
maps which could add value to clinical interventions. ViTs do
not rely on convolutions but on patch-based self-attention and
in contrast to CNNs, no prior knowledge of local connectivity
is present. While this leads to increased capacity, ViTs typi-
cally require an excessive amount of training data which rep-
resents a hurdle in the medical domain as high costs are asso-
ciated with collecting large medical data sets.
In this work, we systematically compare the classification per-
formance of ViTs and CNNs for different data set sizes and
evaluate more data-efficient ViT variants (DeiT). Our results
show that while the performance between ViTs and CNNs is
on par with a small benefit for ViTs, DeiTs outperform the
former if a reasonably large data set is available for training.
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1 Introduction

Chest radiographs (CXR) are commonly used for the iden-
tification, assessment and localization of pathologies. CXRs
enable a cost- and time-effective examination with low ra-
diation dose and allow clinicians to detect a wide range
of diseases, plan treatments and localize specific anatomic
structures. Therefore, CXRs are the most performed imag-
ing study with an annually increasing number of examinations
[2, 9, 10, 13]. A direct consequence of the increasing amount
of CXR examinations is a significantly increased workload
for radiologists. Therefore, radiologists need to assess a large
amount of CXRs manually in their daily routine which can
lead to an increased amount of human-errors [1, 2]. Thus,
a well-integrated computer-assisted tool that could give cues
to the radiologists on what pathology might be present and
where to look, could accelerate clinical workflows and reduce
the number of human errors. Furthermore, such systems could
be especially helpful for inexperienced radiologists and help
to prioritize assessments of CXRs [13]. Various computer-
assisted tools, including feature engineering and later statis-
tical models that learn from training data have been proposed
in the past for this task. Finally, the publication of large-scale
data sets such as CheXpert or MIMIC-CXR [6, 7] paved the
way towards human-level classification performance on CXRs
with deep-learning based CNNs [6, 8, 13]. Furthermore, CNNs
are proposed for a wide variety of tasks such as classification,
localization, segmentation or automated report generation and
have emerged to be the de-facto standard for the processing of
radiographs. However, a recent publication challenges CNNs
and proposes Vision Transformers (ViT) that use multi-headed
self-attention between image patches instead of convolutions
to learn meaningful feature representations from images [4].
Originally, transformer networks have shown strong perfor-
mance for modeling and interpreting sequence-data like sen-
tences and outperform traditional recurrent neural networks in
many sequence-related tasks [12]. Applying the core princi-
ples of Transformers to the image domain as it is done in ViTs
has shown to outperform plain CNNs for large-scale databases
of generic images such as ImageNet.
Beside the potential performance gains, ViTs share the appeal-
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ing property of class-level local attention maps [12]. These at-
tention maps could be helpful not only for the classification
task in CXRs but also for tasks where localization of anatom-
ical structures is required. However, ViTs do not impose prior
knowledge of the local connectivity of image pixels as it is
the case with convolutions. Thus, ViTs require an excessive
amount of training data and are often only applicable when
pre-trained on large-scale data sets [11].
This opens the question, whether ViTs can be leveraged for
multi-class classification problems with CXRs. As large-scale
data sets are crucial for pre-training ViTs, it is of interest if
their performance improvement against CNNs can also hold in
an image domain different from ImageNet with smaller, medi-
cal data sets available for fine-tuning. In this work, we leverage
ViTs for the classification task of pathologies in CXRs and in-
vestigate the use of knowledge distillation for data efficiency.
In summary, our contribution is three-fold:
– We investigate the use of ViTs for multi-label classifica-

tion in CXRs and compare their performance to CNNs.
– We study if knowledge distillation with data-efficient Vi-

sion Transformers (DeiT) [11] can improve the classifica-
tion performance.

– We systematically compare the effect of varying training
set sizes for CNNs, ViTs and DeiTs, respectively.

2 Methods

2.1 Data Set

We use the publicly available CheXpert Data set [6]. The data
set consists of 224316 CXRs of 65240 patients together with
14 labels, that are automatically generated from radiology re-
ports. There are three types of auto-generated labels. The la-
bels 0 and 1 indicate positive and negative labels, respectively.
The third label -1, denotes an uncertain decision. In this work,
we treat all uncertain samples as positive samples. Further, we
focus on the classification of five different pathologies, namely
Atelectasis, Cardiomegaly, Consolidation, Edema and Pleu-
ral Effusion. We split our data into a train, validation and test
set. 20% of the data are used for evaluation (𝒟𝑡𝑒𝑠𝑡). From the
remaining data, we sample 5 data folds, each consisting of
80% training data (𝒟𝑖

𝑡𝑟𝑎𝑖𝑛) and 20% validation data (𝒟𝑖
𝑣𝑎𝑙),

where 𝑖 indicates the fold. To simulate varying training set
sizes we sample subsets including {10,20,...,90}% of 𝒟𝑖

𝑡𝑟𝑎𝑖𝑛

for all folds respectively.
We do not perform a specific pre-processing of the images but
resize the images to a resolution of 224×224px. For data aug-
mentation, we apply random augment [3] and random erasing.

2.2 Deep Learning Models

For our experiments, we utilize DenseNets [5] as baseline
CNNs as they have proven to be a strong baseline for the clas-
sification task on CXRs [13]. In general, CNNs utilize blocks
of convolutions, together with a normalization, non-linear acti-
vation functions and pooling operations stacked on each other
to map an input image to a feature vector. A linear layer maps
the feature vector to the output vector which is compared with
the class labels. DenseNets add specific skip connections be-
tween the convolutional blocks to allow training deep stacks
of these blocks [5]. We compare different versions of the base-
line CNN, namely DenseNet-121 and DenseNet-201 where
the main difference is the depth of the architecture and thus,
the number of trainable parameters.
In contrast to CNNs, ViTs do not process image arrays by con-
volutions. Instead, the image 𝑋 ∈ R𝐻×𝑊×𝐶 is cropped into
𝑁 patches 𝑥𝑝 ∈ R𝑁×(𝑃 2×𝐶), where 𝐻,𝑊 is the dimension
of the image, 𝐶 is the number of channels and 𝑃 the reso-
lution of the cropped patches. The patches 𝑥𝑝 are flattened
and mapped to a fixed dimension 𝐷 by a linear layer. Ad-
ditionally, a class token is prepended to the mapping which
is later used as input for a classification layer. Furthermore,
A 1-dimensional position embedding is added to each patch
embedding. The resulting sequence of image patches, class to-
kens and positional embeddings is used as input to the encoder
of the ViT. The encoder includes multiple stacked transformer
blocks. Each block consists of a multi-headed self-attention
and a multilayer perceptron layer with a normalization layer
and skip-connections in between.
We include different versions of ViTs in our experiments,
namely ViT-Small (ViT-S) and ViT-Base (ViT-B). The differ-
ences between the versions are the number of encoder layers,
the dimension of the embeddings 𝐷, the MLP configuration
and the number of attention heads [12].
We further include data-efficient Vision Transformers (DeiT)
[11] to our study. DeiTs share the same overall architecture
as ViTs. In addition to the class token, a distillation token is
added to the patch embedding. Similar to the class token, the
distillation token interacts with the patch embeddings through
self-attention in the encoder blocks and is processed by a clas-
sification layer to obtain an output vector. It is used in a knowl-
edge distillation framework, where the Kullback-Leibler di-
vergence between the output of a teacher network and the out-
put of the distillation token is added to the loss function to-
gether with the loss between the class token and the ground
truth. The authors of [11] speculate that by this, the inductive
bias of CNNs can be distilled to ViTs, which makes DeiTs
more data-efficient compared to plain ViTs.
We include the pre-trained versions Deit-S and Deit-B in our
studies and investigate two use-cases of DeiTs. First, we use
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Fig. 1: Classification performance for different proportions of the
CheXpert data set as training set. The average AUROC values
of the 5-Fold cross-validation are reported in percent. Standard
deviations are visualized as enveloping intervals.

pre-trained DeiT networks that apply the knowledge distil-
lation process only during pre-training on ImageNet. Sec-
ond, we investigate using knowledge distillation with a trained
DenseNet-201 as a teacher network during fine-tuning on the
CheXpert data set. These distilled models are denoted as Deit-
S-Dist and Deit-B-Dist, respectively.
We train our networks for a maximum number of 50 epochs
and use early stopping based on the validation loss. We use
binary cross-entropy loss as a loss function with inverse fre-
quency weighting to account for the class imbalance in the
training data. For both, CNNs and ViTs, we use AdamW as op-
timizer and a batch size of 128. We scale our learning rate with
a cosine schedule and use two warmup epochs where we lin-
early increase the learning rate. While we use an initial learn-
ing rate of 𝑙𝑟 = 0.0001 for CNNs, ViTs require a smaller initial
learning rate of 𝑙𝑟 = 0.00005. We search the hyperparameters
based on the performance on the validation set 𝒟𝑣𝑎𝑙.

3 Results

We report the Area under Receiver Operator Curve (AUROC)
and the F1 score to evaluate the classification performance.
Both metrics are calculated as weighted averages over the five
different pathology classes, where each class is weighted by
the number of true instances for each label. We report the av-
erage performance of the 5-Fold cross-validation together with
the standard deviation.
As shown in Table 1, it can be observed that ViT models
are on par with the DenseNet baselines. Notably, DenseNet-
121 shows competitive performance to ViT-B while requiring
significantly fewer parameters. Considering DeiT, both vari-
ants show superior classification performance compared to
DenseNet and ViT. Comparing Deit-B and Deit-B-Dist, simi-

Model F1 AUROC Param. (106)

DenseNet-121 63.05±0.77 81.91±0.56 6.96
DenseNet-201 62.79±0.62 81.59±0.71 18.10
ViT-S 62.67±0.24 81.79±0.38 21.67
ViT-B 62.32±0.39 81.92±0.50 85.80
DeiT-S 63.85±0.93 83.02±0.70 21.67
DeiT-B 64.93±0.88 84.02±0.90 85.81
DeiT-S-Dist 63.97±1.17 82.73±1.06 21.67
DeiT-B-Dist 65.51±0.79 84.56±0.91 85.81

Tab. 1: Classification Performance on the CheXpert Data set. AU-
ROC and F1 scores are provided in percent and the average of 5
cross-validation folds is reported together with the standard devia-
tion. Distilled indicates if a model is trained with knowledge distil-
lation from a DenseNet-201 teacher. Param. denotes the number
of trainable parameters in million. The suffix *-Dist denotes models
that are fine-tuned with knowledge distillation with DenseNet201
as a teacher.

lar classification performance can be observed.
Figure 1 shows that for all models the data set size has a
crucial impact on the classification performance. For DeiT-B-
Dist, a higher performance gain can be observed compared to
DenseNet-201 and ViT-B especially when training with larger
training sets. Overall, it can be observed that even for small
data set sizes, the transformer-based models show similar per-
formance compared to DenseNets.
To visualize the pixel-wise attention of the networks, saliency
maps are provided in Figure 2. For DenseNets, a Grad-Cam
approach is used to visualize the attention. For transformer-
based models, the self-attention weights are visualized. It is
noticeable that both networks attend to meaningful regions in
the CXR. While the visualization of the attention map weights
of transformers leads to local attention maps, Grad-CAM-
based saliency maps rather highlight coarse regions.

4 Discussion and Conclusion

Recently, ViTs show performance gains over classical CNNs
on generic images from benchmark data sets such as the Im-
ageNet data set. Furthermore, they add appealing properties
like directly accessible and local attention maps. However,
due to the missing inductive bias and the exceeding number of
trainable parameters, training ViTs requires large-scale data
sets [11].
In this work, we investigate if we can utilize ViT models for
multi-label classification on CXR images and compare their
performance to a baseline CNN. We investigate the effect of
different data set sizes and explore if knowledge distillation
can make the training more data-efficient.
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Fig. 2: Attention visualization for DeiT-B (left) and DenseNet-B
(right). The exemplary shown image is labelled with Atelectasis
and Pleural Effusion. For DeiT-B, the attention map is directly
accessed form the last layer and interpolated to the image dimen-
sion. For DenseNet-B, Grad-Cam is used to generate the attention
visualization.

Our results indicate, that the amount of available training data
might not be sufficient to reveal the true power of ViT models.
We assume that for ViTs, increasing performance will occur
at even larger data sets that are not included in this study. In
contrast to that, the more data-efficient DeiT model shows in-
creasing performance already for smaller training sets. While
we can conclude that the distillation process makes the training
more data-efficient, it is hard to verify if the data efficiency
is achieved by mimicking the inductive bias of the teacher
CNN [11]. Furthermore, even though the required amount
of labelled training data is reduced, still, large data sets are
required to achieve performance improvements over CNNs
with transformer-based networks. However, regularizing the
training by knowledge distillation shows to be beneficial and
can help to efficiently train transformer-based models.
Besides the improved performance of the transformer-based
models, they show local and dense saliency patterns. This ob-
servation indicates that the attention maps of transformers can
be helpful for the localization of lung diseases from CXRs and
have the potential to guide treatment planning.
Overall, we show that self-attention-based ViT models can be
valuable alternatives for multi-label pathology classification,
especially in combination with knowledge distillation.
Our results motivate the research on combinations of CNNs
that enforce local connectivity priors and highly expressive
ViTs with global attention. This could be a promising direc-
tion, especially for the application of ViTs in the medical
domain, where annotated data sets are typically small.
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