
Annika Niemann*, Gabor Janiga, Bernhard Preim, Daniel Behme, and Sylvia Saalfeld

Centerline and blockstructure for fast
structured mesh generation

Abstract: In contrast to unstructured meshes, structured 
meshes yield faster simulation results for bio-medical simula-
tions, but are very time-consuming to create. A preprocessing 
step in the generation of structured meshes is the manual con-
struction of a blockstructure approximating the vessel. Here, 
we present an automatic centerline calculation and blockstruc-
ture generation to reduce the user effort and time of struc-
tured mesh generation. The centerline is detected as points 
in between opposite faces. Based on the centerline, cross sec-
tions are determined and a blockstructure which approximates 
the vessel is automatically generated. The centerline detection 
does not require time-consuming user input and meshes with 
more than 195,000 vertices are processed in less than 160 sec-
onds. The results of the presented automatic centerline detec-
tion are compared to a centerline with manual input gener-
ated by the widely used vmtk tool. The centerlines are similar, 
small differences occur at bifurcation and at the aneurysm.

1 Introduction

Research of deformation of vessels in the brain, like aneurysm 
or arteriovenous malformation, often requires several mesh 
processing steps of the 3D vessel model. For example the cen-
terline and a blockstructure (Fig. 1) are used to generate struc-
tured meshes (Fig. 2) for hemodynamic simulations. An im-
portant part is the centerline detection. Based on the centerline, 
further analysis, for example morphological parameter calcu-
lation, or preparation of structured meshes for hemodynamic 
simulations is carried out [4, 12]. A common tool for center-
line calculation is the vessel modelling toolkit (vmtk) [1, 5, 9]. 
However, the centerline calculation with vmtk often requires 
manual input in form of selecting points on the mesh and rep-
etition if the first result is not sufficient, for example if the cen-
terline of a vessel branch is missing. The presented approach 
does not require user input.
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Fig. 1: Manual generated blockstructure with centerline (red)

Fig. 2: Structured mesh for a segment of a blood vessel

2 Related Work

Guo et al. [6] presented a deep learning centerline detection
for coronary arteries. They use a fully convolutional network
with a minimal path extractor to generate single-pixel wide
centerlines in binary segmentation masks. Yang et al. [14] also
presented deep learning centerline detection, using a U-Net to
predict the centerline of roads in aerial images. These deep
learning solutions are tailored to specific use cases and can not
be easily transferred to other applications. A none deep learn-
ing based framework calculating the centerline of 2D or vox-
elized 3D models was presented by Hassouna and Farag [7].

Antiga et al. [1] detect the centerline as shortest part be-
tween two extremal points based on a voronoi diagram. The
detection requires start and end point of the centerline and is
not suitable for circular structures, such as the Circle of Wilis.
Wei et al. [13] presented a centerline calculation for vascular
meshes. Their algorithm is based on the assumption that vas-
cular structures consists of segments of cylindrical shape. In
the first step, the vessel is segmented into several segments
using k-means fuzzy clustering. After segmentation and pos-
sible interactive refinement of the segmentation, the centerline
is calculated using cut planes for each vertex. Then, the cen-
terline is smoothed and thinned.
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Other approaches detect the centerline in images and are
restricted to the image modality they were deveopled for [8,
10].

The presented approach works on various 3D models of
vessels, for example aneurysms or circular structures like the
circle of willis. It does not require user interaction.

3 Centerline

For each face f of the surface mesh, the center of the face 𝑓𝑐

and the face normal 𝑓𝑛 are calculated. Based on this and an
estimated radius 𝑟 of the vessel, search points 𝑃𝑠 are calcu-
lated as:

𝑃𝑠=𝑓𝑐 − 𝑟 * 𝑓𝑛. (1)

These search points are points, which are near the triangles op-
posite to the face center.The radius is approximated by using
the radius of the nearest outlet. The nearest outlet is selected
based on the distance between face and outlet along the mesh
surface. The outlets are automatically detected by searching
for edges which only belong to one face. This is the case for
open meshes, where the outlets are not closed. If none of these
are found, edges where the adjacent faces build an approxi-
mately 90 degree angle are searched for. In the next step, the
vertices of these edges are analyzed. If they lie in one plane
and form a roughly circular shape, they are classified as outlet.

For each search point the 𝑘 closest face centers 𝑓𝑐 respec-
tive faces are selected. It is then searched for an intersection of
the line between 𝑓𝑐 and corresponding search point 𝑃𝑠 and the
selected faces. The restriction of the faces which are tested for
an intersection improves the run time of the algorithm. Empir-
ically, 𝑘 was set to 500 for reliable and timely determination of
intersections. Next, the midpoint of the line between the face
center and the intersection point is added to the initial center-
line estimation.

Fig. 3: Four lines along the mesh surface

In the next step, outliers are removed. Especially with
close branches, some faces from different vessel branches can
be included in the faces selected with the search points. This
leads to intersection points not on the opposite vessel but fur-
ther away. As a result, some points from the initial centerline

estimation might be outside of the aneurysm mesh. For each
initial centerline point, the vector between the centerline point
and the closest face center of the mesh is calculated and nor-
malized. Under the assumption that the facenormales are ori-
ented outwards, for points inside the mesh the vector in direc-
tion of the closest face center and the corresponding facenor-
mal should have a similar orientation. Centerline points not
fullfilling this, are removed as outliers. In the last step, close
centerline points are merged together.

4 Block initialization

In order to fasten the structured mesh generation, blocks are
created automatically. The first step is the calculation of the
centerline as described in the previous section.

Cross sections of the mesh perpendicular to the center-
line are determined. If a cross section is roughly circular, four
points with largest distance to each other are determined. Cir-
cularity is determined based on the variance of the distance be-
tween points of the cross section contour and the center. The
cross sections are shown in Figure 4. The points are ordered
into four lines, as shown in Figure 3. In the first cross section,
four points with maximal distance to each other are selected.
In the following sections the points closest to the points in the
previous section are selected. The points on these lines are ini-
tial corner points for the blocks. Each block consists of eight
points from two cross sections, two points from each of the
four lines. With exception of the points at the start and the end,
each point belongs to exactly two blocks. These initial blocks
are iterative merged. Two blocks are merged, if the resulting
larger block is still inside the mesh.

Fig. 4: Points of cross-sections: intersections between mesh and
plane perpendicular to centerline

5 Results

For various meshes from an own database and the aneurisk
dataset [2] the centerline is calculated. The centerlines pro-
duced here are compared to centerlines produced by the vmtk
toolkit, which is commonly used in research [1, 3]. In the vmtk
tool the start and end points at the outlets are manually set. If
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Fig. 5: Example of centerline detection, blue: own centerline,
green: vmtk centerline

Fig. 6: Detail: different centerline at bifurcation, blue: own center-
line, green: vmtk centerline

necessary, for example because not all branches are included,
new points are set or the mesh is split up into several meshes
(for example meshes containing cycles like the whole Circle
of Willis) and the centerline calculation is repeated until the
result is sufficient. From a qualitative point of view, both cen-
terlines were similar (see Fig. 5). Vmtk is better in producing
a smooth centerline in bifurcations and the aneurysm (see Fig.
7). The parameters of the presented algorithm were set to pro-
duce good results for most aneurysms (for example Fig. 5).
However, this leads to sub-optimal results for some, which re-
sults in several points around the actual centerline as shown in
Fig. 8. The centerline detection also provides a user interface
where the user can adjust the number of merging iterations to
address this problem. For Table 1 and Figures 5-9 the param-
eters were constant and not adjusted manual. The times for
complete centerline detection without user input are shown in
Table 1. For a complete Circle of Willis with 149,959 vertices
the centerline calculation needed 124.81 seconds (see Fig. 9).

Tab. 1: Time for centerline calculation and difference between
points of the presented centerline and the vmtk centerline

Dataset number of vertices time in sec mean difference

BP 195278 156.56 0.041
C0079 38055 42.87 0.117
C0084 25567 27.90 0.108
C0055 32119 35.16 0.120
C0021 33215 36.30 0.131
C0047 29890 31.84 0.129
KM 45511 52.16 0.074
RNRN 23987 72.6 0.190
KE 88785 88.81 0.0623
SA 62997 132.20 0.100

Fig. 7: Detail: centerline in/under aneurysm, blue: own centerline,
green: vmtk centerline

Fig. 8: Centerline with non optimal results. Further merging the
points would improve the result. blue: own centerline, green: vmtk
centerline

This could not be achieved with vmtk, as the many branches
are major challenge and require several iterations of manual
seed point selection to produce a complete centerline.

The proposed algorithm can approximate vessels with
blocks (see Fig. 10).

6 Discussion

The presented centerline does not require user input. There-
fore, the centerline calculation can be easily included in other
algorithms, for example automatic morphological parameter
calculation or structured mesh generation. It is suitable for a
wide variety of structures and can also be used for large ob-
jects with cycle graphs, for example a whole Circle of Willis.

While for most datasets the quality of the centerline was
good, for some meshes non optimal results are produced. Es-
pecially at bifurcations a sub-optimal centerline may occur.

The blockstructure could be used to reduce the necessary
user input and simplify the generation of structured meshes.
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Fig. 9: Result of centerline detection for circle of willis

Fig. 10: Blockstructure for vessel

7 Summary

The presented centerline calculation is automatic and produces
results comparable to the often used semi-automatic vmtk tool.
Based on the centerline detection an automatic blockstructure
construction for structured mesh generation was described.

For future work, the centerline extraction can speed up the
extraction of morphological parameters [11] or other hemody-
namic preprocessing steps for subsequent blood flow simula-
tion like flow splitting [12] and creation of structured meshes
based on the blockstructure.
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