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Abstract: Reflective Photoplethysmography (PPG) 

sensors are less obtrusive than transmissive sensors, but 

they present patient-dependent variations in the so-called 

“Ratio of Modulation” (𝑅). Thus, the conventionally 

employed calibration curves for determining peripheral 

oxygen saturation (𝑆p𝑂2) may report inaccurate values. In 

this paper, we study the possibility of overcoming these 

limitations through Machine Learning (ML). For that, we 

show the results of applying several algorithms and feature 

combinations to PPG data from a human hypoxia study. 

The study was performed on ten healthy subjects. Their 

target oxygen saturation was reduced in five steps from 98-

100% to 70-77% through an oral mask. Blood Gas Analysis 

(BGA) was performed five times for each saturation level 

to measure the arterial oxygen saturation. PPG data were 

acquired from a reflective pulse oximeter placed in the 

subjects’ ear canals. PPG signals were pre-processed, and 

several features in the frequency and temporal domain were 

calculated. For the ML algorithms’ input, we explored 

different combinations of the features. We trained and 

validated the algorithms with the data from seven patients, 

and we tested them on three. Finally, we performed leave-

one-out cross-validation to ensure the universality of the 

methods. The results show a good agreement of the 

predictions with the BGA values for Linear Regression, k-

Nearest Neighbors, Stochastic Gradient Descent, and 

Neural Network for all input feature combinations with an 

average RMSE in the range of 3%. However, the 

performance of the Linear Regression was not beaten by 

the Neural Network, even for overfitting with 2000 hidden 

layers. The combination of 𝑅 calculated with a Fast-Fourier 

Transform and 𝐴𝐶RMS,red/𝐴𝐶RMS,ir significantly improved 

the results, reducing the RMSE by 25%. This work 

demonstrates that a straight-forward Linear Regression is 

capable of determining 𝑆p𝑂2 with reflective PPG 

independently of the subject if the ratio 𝐴𝐶RMS,red/𝐴𝐶RMS,ir 

is considered simultaneously with the Ratio of Modulation. 
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1 Introduction 

Photoplethysmography (PPG) is an optical technique that 
detects blood volume changes in the tissue’s microvascular 
bed under the skin surface [1]. Its clinical applications range 
from monitoring blood oxygen saturation to determining heart 
rate and respiratory rate. PPG sensors typically consist of two 
LEDs of different wavelengths of light (red and infrared) and 
a photodetector. Oxyhemoglobin (𝐻𝑏𝑂2) and 
deoxyhemoglobin (𝐻𝑏) in blood absorb light differently 
depending upon the wavelength. For measuring 𝑆p𝑂2 , the 
amount of light absorbed by the 𝐻𝑏𝑂2 is calibrated against the 
total amount of light received by the photodetector. Typical 
𝑆p𝑂2  values range from 95 % to 100 %, and lower values 
reflect insufficient oxygen levels or hypoxia. 

In practice, we calculate 𝑆p𝑂2  with the aid of a figure of 
merit known as Ratio of Modulation or Ratio of Ratios (𝑅), 
defined in eq 1. 

𝑹 = (
𝑨𝑪

𝑫𝑪
)

𝐑𝐄𝐃
/ (

𝑨𝑪

𝑫𝑪
)

𝐈𝐑
    (1) 

where 𝐴𝐶RED, 𝐷𝐶RED, 𝐴𝐶IR and 𝐷𝐶IR are the AC and DC 
components of the PPG signal for the red and the infrared 
wavelengths, respectively. After 𝑅 is computed, a calibration 
curve is usually employed for determining oxygen saturation. 
Theoretically, Beer-Lambert’s Law can be modified to relate 
the saturation to 𝑅 [2]. However, today manufacturers 
calibrate each device empirically by performing a hypoxia 
study [3], as the one we employed for this work. For that, they 
collect reference arterial oxygen saturation (𝑆

a
𝑂2) values 

invasively with Blood Gas Analysis (BGA), which is 
considered the gold standard. In this technique, a needle or a 
catheter is inserted into the artery, and blood is extracted. 
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Then, 𝑆a𝑂2  can be calculated accurately from the 
concentration of 𝐻𝑏𝑂2 and 𝐻𝑏 in blood. 

In a previous study from 2012, Venema et al. collected 
reflective PPG signals from an ear pulse oximeter and BGA 
values from ten healthy individuals during a human hypoxia 
study [4]. In that study, they showed that a general calibration 
for all patients was impossible without a previous individual 
normalization of 𝑅 at a starting value of 0.7. Other authors 
such as Arsath et al. have also shown that for reflective PPG, 
“R-value is subject-specific and is also heavily dependent on 
the measurement site” [5], and Guo et al. also proposed an 
individual calibration curve for each participant [6]. 

In a recent publication from Vencat et al. [7], the authors 
suggested using ML to overcome those limitations on 
reflective pulse oximetry on the finger. Their model 
implemented k-Nearest Neighbor (kNN), Quadratic 
Discriminant Analysis, and Bagged Trees, and they used a 
commercial pulse oximeter as a reference. However, they 
observed a significantly lower performance at oxygen 
saturations below 90%, and they did not reach any 𝑆𝑝𝑂2 below 
81%.  

In this work, we study the possibility of employing 
further ML algorithms for the determination of 𝑆𝑝𝑂2 on 
reflective PPG measured on the ear even for lower values of 
𝑆a𝑂2. Haynes [8] concluded that a transmissive PPG sensor on 
the ear shows a much lower agreement between 𝑆a𝑂2 and 
conventionally determined 𝑆p𝑂2 than a sensor on the finger. 
Therefore, we determined  𝑆p𝑂2 with the aid of ML 
algorithms, which might lead to a higher agreement between 
both measures. For that, PPG and BGA datasets from a 
hypoxia human study [4] were used with induced oxygen 
saturations ranging from 70-76% to close to 100%. 

2 Methods 

The hypoxia study was performed on ten healthy patients 
[4]. The patients lay on a bed, and oxygen input for the patients 
was reduced in five steps of 150 to 200 seconds from 98-100% 
to 70-77% through an oral mask.  

The saturation was then measured using several 
methods. On the one hand, arterial blood was extracted five 
times for each level of saturation, and BGA was performed to 
determine the 𝑆a𝑂2. That occurred every 20 seconds after at 
least 30 seconds of stabilization of each saturation stage. On 
the other hand, two “LAVIMO” [4] reflective sensors were 
placed on one ear of the patients: a sensor with a universal fit 
for all patients and another with an individually designed fit.  
For this paper, we only considered the data from the universal-
fit sensor. Finally, reference values of the saturation were also 

extracted from commercial pulse oximeters connected to the 
patients’ index finger. 

The study dataset consists of PPG amplitudes for red and 
infrared wavelengths at a sampling frequency of 200 Hz and 
BGA values with a specific timestamp. The data were 
processed and analyzed in MATLAB 2019a. For pre-
processing, we aligned all the values with respect to time. 
Afterward, we segmented the PPG data into 25 levels for each 
patient: five segments for each of the five stages of saturation. 
Each segment starts 10 seconds before the corresponding 
BGA's blood extraction time and ends 10 seconds after.  

The next step was to filter the PPG signals for red and infrared 
wavelengths at each segment (see also Figure 1 c). First, a 
Butterworth low-pass filter with a cutoff frequency of 10 Hz, 
attenuation of 50 dB and 170th order removes the higher 
frequencies from the signals. Because the AC part relates to 
the heart activity, a 4th order Butterworth band-pass filter with 
cutoff frequencies 0.67 Hz to 4.5 Hz extracts the AC part of 
the PPG. Finally, a 6th order Butterworth low-pass filter 
isolates the DC part of the PPG signals below 0.67 Hz. 

We selected three features from the PPG signal segments 
for each BGA value for training the ML algorithms: the ratios 
𝐴𝐶RMSRED

/𝐴𝐶RMSIR
 and 𝐷𝐶RMSRED

/𝐷𝐶RMSIR
 and 𝑅. For 

calculating the latter, a Fast Fourier Transform (FFT) was 
applied to the segments, and the maximum values from the 

Figure 1: Flow diagram of the pre-processing of the data. 
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FFT around 0 Hz and 1 Hz were considered as 𝐷𝐶FFT  and 
𝐴𝐶FFT, respectively (see also Figure 1 d). For the 
implementation of the ML algorithms, their training, and the 
results’ visualization, we employed Orange Data Mining, 
which is based on Python scripting and a C++ backend [9].  

The software allows for importing features and related 
targets in different formats. Among the available algorithmic 
models are Neural Networks (NN), Random Forest, kNN, and 
Linear Regression. Several parameters can be adjusted or 
selected within the computational block for these algorithms 
for optimal performance on the training data. 

For the optimization of the solutions, it analyzes the 
convergence of the algorithms depending on several values: 
the Mean Absolute Error (MAE), the Mean Squared Error 
(MSE), the Root Mean Squared Error (RMSE), and the 
Coefficient of Determination (R2). Finally, the predictions for 
the test data can be exported in many formats. 

In a previous analysis of the same datasets, Venema et 
al. applied the conventional method for determining 𝑆p𝑂2: 
they calculated R from the data, and they tried to find a 
calibration curve for the saturation. However, they showed 
that, although individual calibration polynomials for each 
patient presented highly accurate results, it was impossible to 
find a global calibration curve for all of them. The reason was 
that the 𝑅-values for each patient showed a parallel shift, so 
they needed an individual normalization of the initial value at 
0.7. 

For this work, we collected data from 10 patients and 25 
levels for each patient, ranging oxygen saturations from 100% 
down to 70%; therefore, the number of samples available for 
the study was 250. To test the ML algorithms’ effectiveness, 
we trained them with 60% of the data from seven patients and 
tested them with the reamining 40%. Afterward, we tested the 
algorithms on all the remaining three patients’ data. 

The training inputs consisted of different combinations 
of the features from the PPG signals and the BGA values as 
targets. Those combinations were the following: only 𝑅; 𝑅, 
𝐴𝐶RMS,red/𝐴𝐶RMS,ir and 𝐷𝐶RMS,red/𝐷𝐶RMS,ir; 𝑅 and 
𝐴𝐶RMS,red/𝐴𝐶RMS,ir; and 𝐴𝐶RMS,red/𝐴𝐶RMS,ir and 𝐷𝐶RMS,red/

𝐷𝐶RMS,ir.We implemented and tested the following algorithms 
and optimizers: AdaBoost, Linear Regression, Neural 
Network, Random Forest, Stochastic Gradient Descent (SGD), 
Support Vector Machine (SVM), Decision Tree, and kNN. In 
Orange Data Mining, we selected each algorithm’s parameters 
for optimal performance. For instance, in the case of the 
Neural Network, increasing numbers of hidden layers were 
implemented, ranging from 1 up to the overfitting case of 
2000.  

3 Results and discussion 

Figure 2 shows the predictions for the best four algorithms vs. 
the actual BGA values. The best results for all four ML 
algorithms were obtained from the input parameter 
combination of 𝑅 and 𝐴𝐶RMS,red/𝐴𝐶RMS,ir, which was 
considered in Figure 2. We can observe that Linear 
Regression, Neural Network, and SGD present an overlapping 
course of the predictions, whereas kNN substantially differs 
for Patient 9, especially for lower 𝑆a𝑂2. However, the 
predictions for levels 9, 10 and 11 in the x-axis match the BGA 
values, as they follow the original signal form. It is also 
observable that the predictions for the last levels in Patient 8 
are shifted in time compared to 𝑆a𝑂2, which also occurs for the 
calculations with the conventional method. Strong motion 
artifacts might cause this behavior due to the relocation of a 
sensor in the ear, which also affected the PPG signal's DC 
component. 

Figure 3 represents the leave-one-out cross-validation 
for all combinations of input data for the tested algorithms. It 
is observable that the average RMSE is approximately 3% for 
all the patients. From the upper two graphs, we conclude that 
the combination of 𝑅 calculated with a Fast-Fourier Transform 
and 𝐴𝐶RMS,red/𝐴𝐶RMS,ir improved the results, reducing the 
sum of the RMSE of each patient from 40 to 30. Besides, not 
even a NN with 2000 hidden layers performs better than the 

Figure 2: Evolution of predicted values for the tested 3 patients. 
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Linear Regression with that combination. This might be a 
consequence of the small dataset from the 250 samples from 
the study that was available for training. This will be further 
investigated with techniques of data augmentation. 

4 Conclusions 

In this study, we tested several ML algorithms for the 
determination of 𝑆p𝑂2from reflective PPG in the ear. The PPG 
signals were preprocessed to extract input features for the ML 
models. The cross-validation demonstrates that a straight-
forward Linear Regression is capable of determining 𝑆p𝑂2 
with reflective PPG independently of the subject. For that, the 
ratio 𝐴𝐶RMS,red/𝐴𝐶RMS,ir shall be considered simultaneously 
with the Ratio of Modulation 𝑅.  
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Figure 3: Leave-one-out cross-validation for all algorithms and 
input feature combinations. 
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