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Abstract

Background and objectives: Both hepatic functional reserve
and the underlying histology are important determinants in
the preoperative risk evaluation before major hepatectomies.
In this project we developed a new approach that implements
cutting-edge research in machine learning and nevertheless is
cheap and easily applicable in a routine clinical setting is
needed.

Methods: After splitting the study population into a training
and test set we trained a convolutional neural network to
predict the liver function as determined by hepatobiliary
mebrofenin scintigraphy and single photon emission
computer tomography (SPECT) imaging.

Results: We developed a workflow for predicting liver
function from routine CT imaging data using convolutional
neural networks. We also evaluated in how far transfer
learning and data augmentation can help to solve remaining
manual data pre-processing steps and implemented the
developed workflow in a clinical routine setting.

Conclusion: We propose a robust semiautomatic end-to-end
classification workflow for abdominal CT scans for the
prediction of liver function based on a deep convolutional
neural network model that shows reliable and accurate results
even with limited computational resources.
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1 Introduction

The preoperative liver function is important to estimate the
risk of adverse outcomes after major hepatic resections.
While laboratory and breath tests have known prognostic
value in chronic liver disease, these variables do not reflect
the degree of liver fibrosis or the distribution of functional
reserve to guide the planning process before major
hepatectomies because of portal hypertension, which are
often present in chronic liver disease [1]. CT based liver
volumetry is often used in the preoperative risk assessment
[2]. In chronic liver disease or liver damage, however, CT-
volumetry does not accurately predict the function of the
remnant liver [3]. Planar dynamic hepatobiliary scintigraphy
and single photon emission computer tomography (SPECT)
with [99mTc]mebrofenin are established methods in nuclear
medicine for this task [4]. Predicting the early postoperative
standard
preoperative CT-imaging has been attempted in the literature
[5], but to the best of the authors knowledge, there is no
literature that attempts to predict liver function from this
imaging modality. combined use of different data sources.

recurrence of hepatocellular carcinoma from

The implementation of an artificial neural network is a
directed, acyclic, hierarchical graph. Its nodes, the neurons,
take a weighted sum of inputs and transform them to the
output by using a so called “activation function”. This output
serves as input to nodes of the next network layer [6].
Network training minimizes the so-called objective or loss
function which compares the network output to the ground
truth. The parameters of this function are the network
weights. The back-propagation algorithm [7,8] iteratively
updates them starting at the last network layer towards the
input typically using stochastic gradient descent.

2 Methods

[99mTc]Mebrofenin dynamic was done according to the
protocol given in [9]. Additional diagnostic CT scans with
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contrast agent (arterial and venous phase) were acquired
following the S3 guidelines of the Association of the
Scientific Medical Societies (AWMEF, No. 032/0530L).

The dataset consists of CT, the liver uptake rate indicating
liver function as determined by hepatobiliary scintigraphy
and liver tumor histology as diagnosed by a senior
pathologist from 35 patients admitted to the University of
Freiburg Medical Center with advanced hepatic tumors.

For the prediction of the liver function as determined by
hepatobiliary scintigraphy all patients in the dataset were
included. The sampling into training, validation and test set
was done in a stratified manner to ensure equal representation
of classes. For random sampling, random permutations of the
IDs within those groups were done.

All tomographic images were converted from DICOM (NM
or CT) to a 16-bit PNG format. The transversal slice showing
the portal vein bifurcation was defined as reference and the
two slices above and below this level were taken. Native CT,
venous and arterial phase images were included. No further
segmentation was done. This approach requires a minimum
of simple user interaction. To keep costs low, the analysis
was performed on a CPU to evaluate whether sufficiently
precise results can also be obtained without expensive
hardware (e.g. GPUs). All
performed using Python 3.6 and the deep learning library
Keras with Tensorflow as backend library [10].

additional analyses were

First, simple convolutional neural networks were trained
from scratch in different experiments corresponding to
different hyperparameter configurations. Second, the Keras
implementations of ResNet50 and VGG16 CNN
architectures were used [11,12]. Both architectures achieved
a very good classification performance on ImageNet [30].
The dataset was divided randomly into three parts: 80% of
the data was used for training (300 images from 15 patients),
10% of this set for cross validation and 75 images from 5
independent patients for testing. The performance of the
algorithm was evaluated by using the accuracy and the area
under the receiver operating curve (AUC). Image data
augmentation was applied to increase the variety of the
training data; for training, scaling, zooming and shearing of
20%, 40%, and 60%
performance of different adaptive gradient descent optimizers
with momentum was compared. The maximum number of
epochs trained was 100 due to computational constraints.
The output of the network was binary (liver clearance rate

were applied. The predictive

below or above 5 %/(m?*min)).

RMSprop is an unpublished, adaptive learning rate method
developed by Geoffrey Hinton. It was developed to solve the
problem of radically diminishing learning rates of the
optimization algorithm Adadelta [13].

The update rule for RMSprop is:
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where @ are the parameters, t is the time-step, 1 is the
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learning rate, gt is the gradient, Et is a matrix of the sum of
the squares of gradients up to time step t, and € is a
smoothing term that avoids division by zero. RMSprop
divides the learning rate by an exponentially decaying
average of squared gradients. As a default setting, gt is set to
0.9 and the learning rate 1 was set to 0.001.

All models were trained by optimizing a cross-entropy loss
function, with a binary cross-entropy-loss.

The performance of the algorithm was evaluated by using the
accuracy and the area under the receiver operating curve
(AUC) by plotting sensitivity versus 1 - specificity in the
testing set.

Training tiles were automatically resized to 224x224 pixels.
Image data augmentation was applied to increase the variety
of the training data. The predictive performance of different
adaptive gradient descent optimizers with momentum was
compared. The maximum number of epochs trained was 100
due to computational constraints.
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Figure 1: Flowchart for the simple 3-block-model.

3 Results

The mean total liver volume in the study population was
1988 ml (with a standard deviation of +/- 811 ml), the mean
total liver function as quantified by the liver clearance rate
LClr was 4.6 %/min/m? (with a standard deviation of +/- 1.7
%/min/m?).

The Pearson correlation coefficient between total liver
volume and total liver function was 0.31, suggesting a very
weak association of the two parameters.
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The best performance for the prediction of the hepatic
functional reserve as quantified by the liver clearance rate
was achieved with the simple 3-block-model, with an
accuracy of 81% on the validation dataset which was not
used for training and with a ROC-AUC of 0.98, a F1-score of
0.86 and a sensitivity of 75%.

Local functional deficits were more common among large
(>1cm) colorectal tumor metastases and hepatocellular
carcinomas. Even large cholangiocellular carcinomas - given
that (6 of with
cholangiocellular carcinomas, i.e. 40%) - had normal liver
clearance rates (> 5%/m?*min) and no qualitative local

there is no cholestasis 14 cases

deficit as shown on SPECT-images.

Three different data augmentation scales were tested (20%,
40% and 60% scaling, zooming and shearing). The best result
obtained using scaling, zooming and shearing
transformations up to a strength of 40%, which yielded an
accuracy of 62% (with a ROC-AUC of 0.80), suggesting that
this may be a good cutoff value.

was

Finally 5-fold cross-validation was performed to evaluate the
results of our simple network, yielding a validation accuracy
of 75.0%.

The predictive performance of models based on the VGG16
and ResNet50 architectures was determined with transferred
weights from ImageNet. The best result with an accuracy of
80% was achieved with a randomly initialized ResNet50
architecture. To prevent overfitting random dropout was
used.

4 Discussion

To summarize our findings, this paper represents three
contributions to the biomedical image analysis literature.
First, to the best of our knowledge, it presents the first study
on the use of one imaging modality as a ground truth for
building prediction models from another imaging modality.
Second, we offer a framework for an affordable, easily
implementable prediction model which is based on state-of-
the art computer vision algorithms sin the preoperative
setting for advanced hepatic tumor surgery. Third, we
identified good hyperparameter configurations and data
augmentation schemes for the predictive analysis of
abdominal CT images using CNN.

One of the main obstacles for the training and deployment of
machine learning models in clinical workflows may be the
lack of training data due to high acquisition costs. While
increasing data variability by data augmentation has been
shown to be also beneficial in biomedical image analysis
[14], the optimal extent of this approach must still be

determined. We included therefore the comparison of several
data augmentation schemes in our analysis. The RMSprop
optimization algorithm was used to test a novel approach, as
it is a popular and powerful algorithm in the machine-
learning community but - likely due to its unpublished nature
- has not been used for medical applications so far.

Faster convergence to the optimal solution and higher
accuracy was achieved with simple models, especially for the
prediction of tumor histology. The initialization scheme had
no significant influence on both. The best model was a
simple
initialization. We demonstrated that smaller networks with

network trained from scratch with random
few layers and significantly lower computational effort also
yield reasonable results. This is in accordance with recent
literature [15], where it has also been confirmed that small
networks give higher predictive performance than standard
machine learning approaches with conventional feature
engineering and feature selection. One reason may be, that
the data that pretrained models are based has little similarity
to biomedical image data. This may lead to a bad
initialization - in some cases near local minima of the
gradient function - which in some cases may not even be

surmountable by adaptive learning rates.

The normal range for the liver clearance rate is reported to be
8.5+1.7 (SD) %/min/m?. The preoperative cutoff value 5
%/min/m? was chosen to allow for a removal of about half of
the liver volume (before or after preconditioning), as 2.7
%/min/m? is seen to be the tolerable minimum value,
regardless of the presence of liver disease [16].

A major advantage of our approach is that annotated data can
be generated from objective parameters like laboratory tests
(in the case of global liver function) or functional imaging
like hepatobiliary scintigraphy and SPECT (in the case of
local distribution of liver function) without requiring relevant
user-interaction. Another important aspect of our study was
the use of CT data from clinical routine. These data are
typically affected by different noise and variable imaging
protocols from different CT vendors, even if they were
acquired following consensus guidelines.

This study has two limitations: First, the number of samples
in the dataset with hepatobiliary function as ground-truth was
very limited; as medical imaging data, especially functional
imaging data are very expensive, this may be in general a
limitation of this kind of data. Second, only a limited number
of architectures and hyperparameters could be tested over
comparatively few epochs due do computational resource
constraints, as all computations were required to terminate
within a reasonable time frame on a CPU.
networks have a better

We showed that simpler

computational cost/performance tradeoff and that good
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performance can also be achieved with only minimal
preprocessing and without much cost. If a complex
architecture like VGG16 or ResNet50 architecture is chosen,
there is no relevant difference between these two options.

5 Conclusion

Recent advances in the development of CNN architectures
and deep learning libraries allow that these algorithms now
perform tasks which were previously the exclusive domain of
human experts. Moreover, CNN can also be used to predict
objective and therefore automatically producible labels based
on functional imaging studies. We showed this in case, that
simple models yield comparative results to deep models
initialized with pre-trained models from Imagenet, where
random initialization may be the best choice. This can only
be overcome as soon as models pre-trained on radiological
imaging data are available.
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