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Applied machine learning for liver surgery
The prediction of liver function from routine CT-images with convolutional neural networks.

Abstract

Background and objectives: Both hepatic functional reserve 
and the underlying histology are important determinants in 
the preoperative risk evaluation before major hepatectomies. 
In this project we developed a new approach that implements
cutting-edge research in machine learning and nevertheless is
cheap and easily applicable in a routine clinical setting is 
needed.

Methods: After splitting the study population into a training 
and test set we trained a convolutional neural network to 
predict the liver function as determined by hepatobiliary 
mebrofenin scintigraphy and single photon emission 
computer tomography (SPECT) imaging.

Results: We developed a workflow for predicting liver 
function from routine CT imaging data using convolutional 
neural networks. We also evaluated in how far transfer 
learning and data augmentation can help to solve remaining 
manual data pre-processing steps and implemented the 
developed workflow in a clinical routine setting.

Conclusion: We propose a robust semiautomatic end-to-end 
classification workflow for abdominal CT scans for the 
prediction of liver function based on a deep convolutional 
neural network model that shows reliable and accurate results
even with limited computational resources.
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1 Introduction

The preoperative liver function is important to estimate the
risk  of  adverse  outcomes  after  major  hepatic  resections.
While  laboratory  and  breath  tests  have  known  prognostic
value in chronic liver disease, these variables do not reflect
the degree of liver fibrosis or the distribution of functional
reserve  to  guide  the  planning  process  before  major
hepatectomies  because  of  portal  hypertension,  which  are
often  present  in  chronic  liver  disease  [1].  CT  based  liver
volumetry is often used in the preoperative risk assessment
[2]. In chronic liver disease or liver damage, however, CT-
volumetry  does  not  accurately  predict  the  function  of  the
remnant liver [3]. Planar dynamic hepatobiliary scintigraphy
and single photon emission computer tomography (SPECT)
with [99mTc]mebrofenin are established methods in nuclear
medicine for this task [4].  Predicting the early postoperative
recurrence  of  hepatocellular  carcinoma  from  standard
preoperative CT-imaging has been attempted in the literature
[5],  but  to  the  best  of  the  authors  knowledge,  there  is  no
literature  that  attempts  to  predict  liver  function  from  this
imaging modality. combined use of different data sources.

The  implementation  of  an  artificial  neural  network  is  a
directed, acyclic, hierarchical graph. Its nodes, the neurons,
take  a  weighted  sum of  inputs  and  transform them to  the
output by using a so called “activation function”. This output
serves  as  input  to  nodes  of  the  next  network  layer  [6].
Network training minimizes  the  so-called  objective  or  loss
function which compares the network output to the ground
truth.  The  parameters  of  this  function  are  the  network
weights.  The  back-propagation  algorithm  [7,8]  iteratively
updates them starting at the last  network layer towards the
input typically using stochastic gradient descent. 

2 Methods

[99mTc]Mebrofenin  dynamic  was  done  according  to  the
protocol given in [9].  Additional diagnostic CT scans with
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contrast  agent  (arterial  and  venous  phase)  were  acquired
following  the  S3  guidelines  of  the  Association  of  the
Scientific Medical Societies (AWMF, No. 032/053OL).

The dataset  consists of CT, the liver uptake rate indicating
liver  function  as  determined  by  hepatobiliary  scintigraphy
and  liver  tumor  histology  as  diagnosed  by  a  senior
pathologist  from 35 patients  admitted  to  the  University  of
Freiburg Medical Center with advanced hepatic tumors.

For  the  prediction  of  the  liver  function  as  determined  by
hepatobiliary  scintigraphy  all  patients  in  the  dataset  were
included. The sampling into training, validation and test set
was done in a stratified manner to ensure equal representation
of classes. For random sampling, random permutations of the
IDs within those groups were done.

All tomographic images were converted from DICOM (NM
or CT) to a 16-bit PNG format. The transversal slice showing
the portal vein bifurcation was defined as reference and the
two slices above and below this level were taken. Native CT,
venous and arterial phase images were included. No further
segmentation was done. This approach requires a minimum
of simple user  interaction.  To keep costs  low, the analysis
was  performed  on  a  CPU to  evaluate  whether  sufficiently
precise  results  can  also  be  obtained  without  expensive
additional  hardware  (e.g.  GPUs).  All  analyses  were
performed  using  Python  3.6  and  the  deep  learning  library
Keras with Tensorflow as backend library [10].

First,  simple  convolutional  neural  networks  were  trained
from  scratch  in  different  experiments  corresponding  to
different hyperparameter  configurations.  Second,  the  Keras
implementations  of  ResNet50  and  VGG16  CNN
architectures were used [11,12]. Both architectures achieved
a very  good classification  performance  on  ImageNet  [30].
The dataset was divided randomly into three parts: 80% of
the data was used for training (300 images from 15 patients),
10% of this set for cross validation and 75 images from 5
independent  patients  for  testing.  The  performance  of  the
algorithm was evaluated by using the accuracy and the area
under  the  receiver  operating  curve  (AUC).  Image  data
augmentation  was  applied  to  increase  the  variety  of  the
training data; for training, scaling, zooming and shearing of
20%,  40%,  and  60%  were  applied.  The  predictive
performance of different adaptive gradient descent optimizers
with momentum was compared.  The maximum number  of
epochs  trained  was  100  due  to  computational  constraints.
The output of the network was binary (liver clearance rate
below or above 5 %/(m²*min)).

RMSprop is an unpublished, adaptive learning rate method
developed by Geoffrey Hinton. It was developed to solve the
problem  of  radically  diminishing  learning  rates  of  the
optimization algorithm Adadelta [13].

The update rule for RMSprop is:

where   are  the  parameters,  t  is  the  time-step,  η  is  the

learning rate, gt is the gradient, Et is a matrix of the sum of
the  squares  of  gradients  up  to  time  step  t,  and  ε  is  a
smoothing  term  that  avoids  division  by  zero.  RMSprop
divides  the  learning  rate  by  an  exponentially  decaying
average of squared gradients. As a default setting, gt is set to
0.9 and the learning rate η was set to 0.001.

All models were trained by optimizing a cross-entropy loss
function, with a binary cross-entropy-loss.

The performance of the algorithm was evaluated by using the
accuracy  and  the  area  under  the  receiver  operating  curve
(AUC) by  plotting  sensitivity  versus  1  -  specificity  in  the
testing set.

Training tiles were automatically resized to 224x224 pixels.
Image data augmentation was applied to increase the variety
of the training data. The predictive performance of different
adaptive  gradient  descent  optimizers  with  momentum  was
compared. The maximum number of epochs trained was 100
due to computational constraints.

Figure 1: Flowchart for the simple 3-block-model.

3 Results

The  mean  total  liver  volume  in  the  study  population  was
1988 ml (with a standard deviation of +/- 811 ml), the mean
total liver function as quantified by the liver clearance rate
LClr was 4.6 %/min/m² (with a standard deviation of +/- 1.7
%/min/m²).

The  Pearson  correlation  coefficient  between  total  liver
volume and total liver function was 0.31, suggesting a very
weak association of the two parameters.
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The  best  performance  for  the  prediction  of  the  hepatic
functional  reserve as  quantified  by the  liver  clearance rate
was  achieved  with  the  simple  3-block-model,  with  an
accuracy  of  81% on the  validation  dataset  which  was  not
used for training and with a ROC-AUC of 0.98, a F1-score of
0.86 and a sensitivity of 75%.

Local  functional  deficits  were  more common among large
(>1cm)  colorectal  tumor  metastases  and  hepatocellular
carcinomas. Even large cholangiocellular carcinomas - given
that  there  is  no  cholestasis  (6  of  14  cases  with
cholangiocellular  carcinomas,  i.e.  40%) -  had normal  liver
clearance  rates  (>  5%/m²*min)  and  no  qualitative  local
deficit as shown on SPECT-images.

Three different data augmentation scales were tested (20%,
40% and 60% scaling, zooming and shearing). The best result
was  obtained  using  scaling,  zooming  and  shearing
transformations up to a strength of 40%, which yielded an
accuracy of 62% (with a ROC-AUC of 0.80), suggesting that
this may be a good cutoff value.

Finally 5-fold cross-validation was performed to evaluate the
results of our simple network, yielding a validation accuracy
of 75.0%.

The predictive performance of models based on the VGG16
and ResNet50 architectures was determined with transferred
weights from ImageNet. The best result with an accuracy of
80%  was  achieved  with  a  randomly  initialized  ResNet50
architecture.  To  prevent  overfitting  random  dropout  was
used. 

4 Discussion

To  summarize  our  findings,  this  paper  represents  three
contributions  to  the  biomedical  image  analysis  literature.
First, to the best of our knowledge, it presents the first study
on the use of one imaging modality  as a ground truth for
building prediction models from another imaging modality.
Second,  we  offer  a  framework  for  an  affordable,  easily
implementable prediction model which is based on state-of-
the  art  computer  vision  algorithms  sin  the  preoperative
setting  for  advanced  hepatic  tumor  surgery.  Third,  we
identified  good  hyperparameter  configurations  and  data
augmentation  schemes  for  the  predictive  analysis  of
abdominal CT images using CNN.

One of the main obstacles for the training and deployment of
machine learning models in clinical  workflows may be the
lack  of  training  data  due  to  high  acquisition  costs.  While
increasing  data  variability  by  data  augmentation  has  been
shown to  be  also  beneficial  in  biomedical  image  analysis
[14],  the  optimal  extent  of  this  approach  must  still  be

determined. We included therefore the comparison of several
data  augmentation  schemes in  our  analysis.  The RMSprop
optimization algorithm was used to test a novel approach, as
it  is  a  popular  and  powerful  algorithm  in  the  machine-
learning community but - likely due to its unpublished nature
-  has not been used for medical applications so far.

Faster  convergence  to  the  optimal  solution  and  higher
accuracy was achieved with simple models, especially for the
prediction of tumor histology. The initialization scheme had
no  significant  influence  on  both.  The  best  model  was  a
simple  network  trained  from  scratch  with  random
initialization.  We demonstrated  that  smaller  networks  with
few layers and significantly lower computational effort also
yield  reasonable  results.  This  is  in  accordance with  recent
literature [15], where it has also been confirmed that small
networks give higher  predictive  performance than standard
machine  learning  approaches  with  conventional  feature
engineering and feature selection. One reason may be, that
the data that pretrained models are based has little similarity
to  biomedical  image  data.  This  may  lead  to  a  bad
initialization  -  in  some  cases  near  local  minima  of  the
gradient  function  -  which  in  some cases  may not even  be
surmountable by adaptive learning rates.

The normal range for the liver clearance rate is reported to be
8.5±1.7  (SD)  %/min/m².  The  preoperative  cutoff  value  5
%/min/m² was chosen to allow for a removal of about half of
the  liver  volume  (before  or  after  preconditioning),  as  2.7
%/min/m²  is  seen  to  be  the  tolerable  minimum  value,
regardless of the presence of liver disease [16].

A major advantage of our approach is that annotated data can
be generated from objective parameters like laboratory tests
(in the case of global liver function) or functional imaging
like  hepatobiliary  scintigraphy and  SPECT (in  the  case  of
local distribution of liver function) without requiring relevant
user-interaction. Another important aspect of our study was
the  use  of  CT  data  from  clinical  routine.  These  data  are
typically  affected  by  different  noise  and  variable  imaging
protocols  from  different  CT  vendors,  even  if  they  were
acquired following consensus guidelines. 

This study has two limitations: First, the number of samples
in the dataset with hepatobiliary function as ground-truth was
very limited; as medical imaging data, especially functional
imaging data are very expensive, this  may be in  general  a
limitation of this kind of data. Second, only a limited number
of  architectures  and  hyperparameters  could  be  tested  over
comparatively  few  epochs  due  do  computational  resource
constraints,  as  all  computations were required to  terminate
within a reasonable time frame on a CPU.

We  showed  that  simpler  networks  have  a  better
computational  cost/performance  tradeoff  and  that  good
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performance  can  also  be  achieved  with  only  minimal
preprocessing  and  without  much  cost.  If  a  complex
architecture like VGG16 or ResNet50 architecture is chosen,
there is no relevant difference between these two options. 

5 Conclusion

Recent  advances in  the development of  CNN architectures
and deep learning libraries allow that these algorithms now
perform tasks which were previously the exclusive domain of
human experts. Moreover, CNN can also be used to predict
objective and therefore automatically producible labels based
on functional imaging studies. We showed this in case, that
simple  models  yield  comparative  results  to  deep  models
initialized  with  pre-trained  models  from  Imagenet,  where
random initialization may be the best choice. This can only
be overcome as soon as models pre-trained on radiological
imaging data are available.
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