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Prediction of the histopathological tumor type
of newly diagnosed liver lesions from 
standard abdominal computer tomography 
with a machine-learning classifier based on 
convolutional neural networks.

Abstract

Background and objectives: Liver lesions are a relatively 
common incidental finding in computer tomography (CT) of 
the abdomen. The current gold standard is liver biopsy, 
which has the downside of respecting only a small part of the
total lesion volume. Furthermore, this invasive method 
carries interventional risks like bleeding or infection. 
Therefore, an image-based biomarker would be highly 
desirable. Conventional “radiomics” methods have often 

been utilized for similar problems, but the results are often 
not reproducible. This is mainly due to sampling errors and 
interobserver variability, but also the seemingly complex 
nature of the problem. We present a new approach that 
implements cutting-edge research in machine learning which 
is nevertheless cheap and easily applicable in a routine 
clinical setting. To achieve this, we use convolutional neural 
networks (CNN) to predict the histopathological findings 
from liver lesions from preoperative liver CT.

Methods: After splitting the study population into a training 
and test set we trained a CNN to predict the histopathological
tumor type from CT data.

Results: The developed CNN workflow is able to predict 
liver tumor histology from routine CT images. We also 
evaluated in how far transfer learning and data augmentation 
can help in solving this problem and implemented the 
developed workflow in a clinical routine setting.

Conclusion: We propose a robust semiautomatic end-to-end 
classification workflow for the prediction of the 
histopathological type of tumor lesions based on abdominal 
CT and a deep convolutional neural network model. In our 
cohort, the model shows reliable and accurate results even 
with limited computational resources.
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1 Introduction

Deep  learning  algorithms  based  on  convolutional  neural
networks  (CNNs)  are  a  powerful  tool  for  many  image
classification tasks. Due to their outstanding performance in
other  domains,  they  are  a  promising  method  to  facilitate
advanced computer-aided-diagnosis  for routine CT-imaging
data.  The  bottleneck  for  this  method  is  the  annotation  of
imaging-data;  currently  this  requires  experienced  experts,
which is not only expensive but also largely qualitative and
not standardized. Standard radiomic features have not made it
into  practical  clinical  use  due  to  their  sensitivity  on
interobserver-variability.  The  solution  we  propose  for  this
problem  consists  of  using  quantitative  outcomes  as
determined  by functional  imaging  as  ground truth  and  the
combined use of different data sources.
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Artificial  neural networks are directed, hierarchical,  acyclic
graphs where the nodes are called “neurons”. Each neuron
receives  several  inputs,  takes  the  weighted  sum  over  its
inputs  and  passes  them  to  a  nonlinear  function  called
“activation function”, whose output is forward-propagated to
nodes  of  the  next  network layer  [1].  The last  layer  of  the
network is compared to the ground truth with a predefined
“loss” or “error” function, resulting in a total error or „loss“
value  for  the  given  sample.  The  loss  is  subsequently
minimized using gradient  descent  optimization  with the so
called  backpropagation  algorithm.  More  specifically,  the
parameter  gradients  are  minimized  after  computing  all  of
them with the backpropagation algorithm [2, 3]. The number
of samples for which average loss and gradient are calculated
is called batch-size. While simple artificial neural networks
are fully connected, convolutional neural networks have the
property of local connectivity and shared weights, which also
leads  to  a  hierarchical,  representation  of  image  features
naturally  adapted  to  the  local  redundancy  of  images.  The
latter  corresponds  to  learnable  filter  kernels.  For  image
processing tasks, convolutional neural network architectures
are a more efficient way to process information [4].

2 Methods

The  dataset  consists  diagnostic  CT  images  with  contrast
agent (arterial  and venous phase) of the abdomen from 38
patients  admitted  to  the  University  of  Freiburg  Medical
Center  with  advanced  hepatic  tumors  and  the
histopathological  diagnosis  written  by  senior  pathologists.
CT  Images  were  acquired  following  S3  guidelines  of  the
Association of the Scientific Medical Societies (AWMF, No.
032/053OL).

For  the  prediction  of  the  liver  function  as  determined  by
hepatobiliary  scintigraphy  all  patients  in  the  dataset  were
included. The sampling into training, validation and test set
was done in a stratified manner to ensure equal representation
of classes. For random sampling, random permutations of the
IDs (identification numbers) within those groups were done.
For each patient five slices in different contrast-enhancement
phases  were  used.  Validation  was  done  on  a  randomly
determined set of patients. For validation one slice per patient
was used.

All tomographic images were converted from a DICOM (NM
or  CT)  to  16-bit  PNG.  The  transversal  slice  showing  the
portal vein bifurcation was defined as reference and the two
slices  above  and  below this  level  were  taken.  Native  CT,
venous and arterial phase images were included. No further
segmentation was done. This approach requires a minimum
of simple user interactions saves computing time and reduces
hardware  requirements.  To  keep  costs  low  and  the  whole
workflow  affordable  no  GPU's  were  used.  Instead,  the

analysis  was  performed  on  a  CPU to  evaluate  in  whether
sufficiently  precise  results  can  also  be  obtained  without
expensive additional hardware. All analyses were performed
in Python 3.6 using the deep learning library Keras [5] based
on Google’s Tensorflow library [6].

First,  simple  convolutional  neural  networks  were  trained
from  scratch  in  different  experiments  corresponding  to
different hyperparameter configurations.
Second, the Keras implementations of ResNet50 and VGG16
CNN  architecture  were  used  [7,  8].  Both  architectures
achieved very good classification performances on ImageNet
[9]. The network we used was based on those architectures,
pre-trained  on  approximately  1.2  million  images  from
ImageNet and re-trained on the CT-images collected in our
study. The fully-connected layers at the end of the network
for ImageNet were removed and replaced by a different fully
connected network.

To prevent overfitting random dropout was used. The dataset
consist 1710 images (n = 38, 15 images per patient, 3 contrast
phases per image) was divided randomly into three parts: 
- Training: The radiological data of 25 patients was used to
train the network,
-  Validation:  The  image  data  of  5  patients  was  used  for
validation and  
- Testing: The records of 8 independent patients whose image
data  were  acquired  a  few  months  later  served  to  test  the
algorithm.

The performance of the algorithm was evaluated by using the
accuracy  and  the  area  under  the  receiver  operating  curve
(AUC) by  plotting  sensitivity  versus  1  -  specificity  in  the
testing set. Training tiles were automatically resized to 224 x
224 pixels  (the  fixed  input  dimension  of  the  VGG16  and
ResNet50 CNNs). Image data augmentation was applied to
increase  the  variety  of  the  training  data.  For  the  transfer
learning  task  the  ResNet50  and  VGG16  architecture  were
compared for both the prediction of functional reserve and
tumor  histology.  For  histology  prediction  random
initialization and initialization with a Glorot- uniform method
were  used  as  baseline  for  comparison.  The  output  of  the
network was categorical with three classes, constituting the
most common types of hepatic tumors, that is hepatocellular
carcinomas, cholangiocellular carcinomas and colorectal liver
metastases.  Patients  with  other,  rare  tumor  types  were  not
included to  avoid  overfitting  to  nonrepresentative  samples.
All models were trained by optimizing a categorical  cross-
entropy-loss function.
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3 Results

The median total liver volume in the study population was
1817ml (with a mean of 1988 ml and a standard deviation of
+/- 811 ml).

To  predict  class  membership  we  used  a  three-class
supervised model with different initialization schemes to test
whether transfer learning was superior to random parameter
settings.  Both  random  initialization,  full  or  partial  weight
transfer  and  a  Glorot-uniform-initializer  were  used  to
determine a set of initial weights. The latter draws random
values from a normal distribution with a mean of zero and a
variance  that  is  the  multiplicative  invert  of  the  number  of
incoming neurons.  The results  of  all  models  are  shown in
Table 3.

Table  3:  Initialization  and  performance  of  all  models  that
were tested in our study.

The best model for the prediction of tumor histology was a
model  based  on  the  VGG1  architecture  and  random
initialization with an accuracy of 40% on the independent test
dataset.

The predictive performance of models based on the VGG16
and ResNet50 architectures was determined with transferred
weights from ImageNet. The accuracy of the corresponding
models is  summarized  in  Table 4. The best  result  with an
accuracy of 80% was achieved with a randomly initialized
ResNet50 architecture.

Table  4:  Accuracy  [%]  of  all  models  with  complex
architectures and weight transfer.

  

4 Discussion

Faster  convergence  to  the  optimal  solution  and  higher
accuracy for the prediction of tumor histology was achieved
with  simple  models.  The  initialization  scheme  had  no
significant influence on both. The best model was based on
the VGG16 architecture  trained  from scratch  with  random
initialization. The second-best model was a simple network
trained  from scratch  with  random initialization,  suggesting
that transfer learning from standard image domains does not
yield  relevant  advantages  over  training  from  scratch  with
random initialization. Furthermore, small networks with few
layers and significantly lower computational effort also yield
reasonable results. This is in accordance with recent literature
[10], where it has also been confirmed that small networks
give  higher  predictive  performance  than  standard  machine
learning  approaches  with  conventional  feature  engineering
and feature selection. One reason may be, that the data that
pre-trained  models  are  based  on,  have  little  similarity  to
biomedical image data. This may lead to a bad initialization -
in some cases near local minima of the gradient function -
which  in  some  cases  may  not  even  be  surmountable  by
adaptive learning rates.

We  showed  that  simpler  networks  have  a  better
computational  cost/performance  tradeoff  and  that  good
performance  can  also  be  achieved  with  only  minimal
preprocessing  and  without  much  cost.  If  a  complex
architecture like VGG16 or ResNet50 architecture is chosen,
there  is  no  relevant  difference between these  two options.
Furthermore, as histology is a very complex endpoint much
more data may be required to build better predictive models.
Although transfer learning has been praised as the solution to
sparse  data  in  other  domains,  for  the question  we tried  to
solve transfer  learning  from domains  unsimilar  to  medical
images  does  not  bring  any  benefit.  Therefore,  there  is  an
urgent  need  to  generate  pre-trained  models  from  a  large
amount of biomedical imaging data.

This study has the following limitations: First, the number of
samples in the dataset was very limited; as medical imaging
data is very expensive this may be called a general limitation
of this kind of data, though. Second, due to the small number
of  samples  even  after  data  augmentation  only  hold-out
validation  could  be  implemented  to  compare  the  trained
models, as in k-fold-crossvalidation the dataset is split into k
equally  sized  folds  for  which  the  amount  of  data  was  not



Insert your title here

sufficient. Third, only a limited number of architectures and
hyperparameters  could  be  tested  over  comparatively  few
epochs  due  do  computational  resource  constraints,  as  all
computations were required to terminate within a reasonable
time frame on a CPU.

To summarize our findings, this paper represents three major
contributions  to  the  biomedical  image  analysis  literature.
First, to the best of our knowledge, it presents the first study
on the use of one imaging modality  as a ground truth for
building prediction models from another imaging modality.
Second,  we  offer  a  framework  for  an  affordable,  easily
implementable prediction model which is based on state-of-
the  art  computer  vision  algorithms  sin  the  preoperative
setting  for  advanced  hepatic  tumor  surgery.  Third,  we
identified  good  hyperparameter  configurations  and  data
augmentation  schemes  for  the  predictive  analysis  of
abdominal CT-images using convolutional neural networks.

5Conclusion

Recent advances in the development of convolutional neural
network architectures and deep learning libraries allow that
these algorithms now perform tasks which were previously
the exclusive domain of human experts. We showed this in
case,  that  simple models  yield comparative  results  to  deep
models  initialized  with  pre-trained  models  from Imagenet,
where random initialization may be the best choice.
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