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Prediction of the histopathological tumor type
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standard abdominal computer tomography
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convolutional neural networks.

Abstract

Background and objectives: Liver lesions are a relatively
common incidental finding in computer tomography (CT) of
the abdomen. The current gold standard is liver biopsy,
which has the downside of respecting only a small part of the
total lesion volume. Furthermore, this invasive method
carries interventional risks like bleeding or infection.
Therefore, an image-based biomarker would be highly
desirable. Conventional “radiomics” methods have often
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been utilized for similar problems, but the results are often
not reproducible. This is mainly due to sampling errors and
interobserver variability, but also the seemingly complex
nature of the problem. We present a new approach that
implements cutting-edge research in machine learning which
is nevertheless cheap and easily applicable in a routine
clinical setting. To achieve this, we use convolutional neural
networks (CNN) to predict the histopathological findings
from liver lesions from preoperative liver CT.

Methods: After splitting the study population into a training
and test set we trained a CNN to predict the histopathological
tumor type from CT data.

Results: The developed CNN workflow is able to predict
liver tumor histology from routine CT images. We also
evaluated in how far transfer learning and data augmentation
can help in solving this problem and implemented the
developed workflow in a clinical routine setting.

Conclusion: We propose a robust semiautomatic end-to-end
classification workflow for the prediction of the
histopathological type of tumor lesions based on abdominal
CT and a deep convolutional neural network model. In our
cohort, the model shows reliable and accurate results even
with limited computational resources.
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1 Introduction

Deep learning algorithms based on convolutional neural
networks (CNNs) are a powerful tool for many image
classification tasks. Due to their outstanding performance in
other domains, they are a promising method to facilitate
advanced computer-aided-diagnosis for routine CT-imaging
data. The bottleneck for this method is the annotation of
imaging-data; currently this requires experienced experts,
which is not only expensive but also largely qualitative and
not standardized. Standard radiomic features have not made it
into practical clinical use due to their sensitivity on
interobserver-variability. The solution we propose for this
problem consists of using quantitative outcomes as
determined by functional imaging as ground truth and the
combined use of different data sources.
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Artificial neural networks are directed, hierarchical, acyclic
graphs where the nodes are called “neurons”. Each neuron
receives several inputs, takes the weighted sum over its
inputs and passes them to a nonlinear function called
“activation function”, whose output is forward-propagated to
nodes of the next network layer [1]. The last layer of the
network is compared to the ground truth with a predefined
“loss” or “error” function, resulting in a total error or ,,loss
value for the given sample. The loss is subsequently
minimized using gradient descent optimization with the so
called backpropagation algorithm. More specifically, the
parameter gradients are minimized after computing all of
them with the backpropagation algorithm [2, 3]. The number
of samples for which average loss and gradient are calculated
is called batch-size. While simple artificial neural networks
are fully connected, convolutional neural networks have the
property of local connectivity and shared weights, which also
leads to a hierarchical, representation of image features
naturally adapted to the local redundancy of images. The
latter corresponds to learnable filter kernels. For image
processing tasks, convolutional neural network architectures
are a more efficient way to process information [4].

2 Methods

The dataset consists diagnostic CT images with contrast
agent (arterial and venous phase) of the abdomen from 38
patients admitted to the University of Freiburg Medical
with  advanced hepatic the
histopathological diagnosis written by senior pathologists.

Center tumors  and
CT Images were acquired following S3 guidelines of the
Association of the Scientific Medical Societies (AWMF, No.

032/0530L).

For the prediction of the liver function as determined by
hepatobiliary scintigraphy all patients in the dataset were
included. The sampling into training, validation and test set
was done in a stratified manner to ensure equal representation
of classes. For random sampling, random permutations of the
IDs (identification numbers) within those groups were done.
For each patient five slices in different contrast-enhancement
phases were used. Validation was done on a randomly
determined set of patients. For validation one slice per patient
was used.

All tomographic images were converted from a DICOM (NM
or CT) to 16-bit PNG. The transversal slice showing the
portal vein bifurcation was defined as reference and the two
slices above and below this level were taken. Native CT,
venous and arterial phase images were included. No further
segmentation was done. This approach requires a minimum
of simple user interactions saves computing time and reduces
hardware requirements. To keep costs low and the whole
workflow affordable no GPU's were used. Instead, the

analysis was performed on a CPU to evaluate in whether
sufficiently precise results can also be obtained without
expensive additional hardware. All analyses were performed
in Python 3.6 using the deep learning library Keras [5] based
on Google’s Tensorflow library [6].

First, simple convolutional neural networks were trained
from scratch in different experiments corresponding to
different hyperparameter configurations.

Second, the Keras implementations of ResNet50 and VGG16
CNN architecture were used [7, 8]. Both architectures
achieved very good classification performances on ImageNet
[9]. The network we used was based on those architectures,
pre-trained on approximately 1.2 million images from
ImageNet and re-trained on the CT-images collected in our
study. The fully-connected layers at the end of the network
for ImageNet were removed and replaced by a different fully
connected network.

To prevent overfitting random dropout was used. The dataset
consist 1710 images (n = 38, 15 images per patient, 3 contrast
phases per image) was divided randomly into three parts:

- Training: The radiological data of 25 patients was used to
train the network,

- Validation: The image data of 5 patients was used for
validation and

- Testing: The records of § independent patients whose image
data were acquired a few months later served to test the
algorithm.

The performance of the algorithm was evaluated by using the
accuracy and the area under the receiver operating curve
(AUC) by plotting sensitivity versus 1 - specificity in the
testing set. Training tiles were automatically resized to 224 x
224 pixels (the fixed input dimension of the VGG16 and
ResNet50 CNNs). Image data augmentation was applied to
increase the variety of the training data. For the transfer
learning task the ResNet50 and VGGI16 architecture were
compared for both the prediction of functional reserve and
histology.
initialization and initialization with a Glorot- uniform method
were used as baseline for comparison. The output of the
network was categorical with three classes, constituting the

tumor For histology prediction random

most common types of hepatic tumors, that is hepatocellular
carcinomas, cholangiocellular carcinomas and colorectal liver
metastases. Patients with other, rare tumor types were not
included to avoid overfitting to nonrepresentative samples.
All models were trained by optimizing a categorical cross-
entropy-loss function.
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3 Results

The median total liver volume in the study population was
1817ml (with a mean of 1988 ml and a standard deviation of
+/- 811 ml).

To predict class membership we used a three-class
supervised model with different initialization schemes to test
whether transfer learning was superior to random parameter
settings. Both random initialization, full or partial weight
transfer and a Glorot-uniform-initializer were used to
determine a set of initial weights. The latter draws random
values from a normal distribution with a mean of zero and a
variance that is the multiplicative invert of the number of
incoming neurons. The results of all models are shown in
Table 3.

Table 3: Initialization and performance of all models that
were tested in our study.

Model Architecture |Initialization Validation accuracy in|
%o
Model 18 Simple 3-Random initialization 51.7
block
architecture
IModel 19 Simple 3Glorot-uniform initializer 433
block
architecture
Model 20 VGG 16 Initialization with weights from| 33.3
architecture |imagenet, no retraining / onl
replacement of classification|
layer
Model 21 VGG16 Initialization with weights from| 467
architecture |imagenet, partial retraining|
(only replaced fully connected
layers)
IModel 22 VGG 16 Initialization with weights from| 33.3
architecture |imagenet, retraining of full
network
Model 23 VGG 16 Random initialization, training| 53.3 (40.0 on second
architecture |of full network test set)
Model 24 ResNet50 Initialization with weights from| 20.0
architecture |imagenset, retraining of full
network
Model 25 ResNetS0 Random initialization, training 46.7
architecture |of full network

The best model for the prediction of tumor histology was a
model based on the VGGI architecture and random
initialization with an accuracy of 40% on the independent test
dataset.

The predictive performance of models based on the VGG16
and ResNet50 architectures was determined with transferred
weights from ImageNet. The accuracy of the corresponding
models is summarized in Table 4. The best result with an
accuracy of 80% was achieved with a randomly initialized
ResNet50 architecture.

Table 4: Accuracy [%] of all models with complex
architectures and weight transfer.

Weights from imagenet Random inttialization
65.3

50.0

VGG 16
ResNet50

60.0

80.0

4 Discussion

Faster convergence to the optimal solution and higher
accuracy for the prediction of tumor histology was achieved
with simple models. The initialization scheme had no
significant influence on both. The best model was based on
the VGG16 architecture trained from scratch with random
initialization. The second-best model was a simple network
trained from scratch with random initialization, suggesting
that transfer learning from standard image domains does not
yield relevant advantages over training from scratch with
random initialization. Furthermore, small networks with few
layers and significantly lower computational effort also yield
reasonable results. This is in accordance with recent literature
[10], where it has also been confirmed that small networks
give higher predictive performance than standard machine
learning approaches with conventional feature engineering
and feature selection. One reason may be, that the data that
pre-trained models are based on, have little similarity to
biomedical image data. This may lead to a bad initialization -
in some cases near local minima of the gradient function -
which in some cases may not even be surmountable by
adaptive learning rates.

We showed that simpler networks have a better
computational cost/performance tradeoff and that good
performance can also be achieved with only minimal
preprocessing and without much cost. If a complex
architecture like VGG16 or ResNet50 architecture is chosen,
there is no relevant difference between these two options.
Furthermore, as histology is a very complex endpoint much
more data may be required to build better predictive models.
Although transfer learning has been praised as the solution to
sparse data in other domains, for the question we tried to
solve transfer learning from domains unsimilar to medical
images does not bring any benefit. Therefore, there is an
urgent need to generate pre-trained models from a large
amount of biomedical imaging data.

This study has the following limitations: First, the number of
samples in the dataset was very limited; as medical imaging
data is very expensive this may be called a general limitation
of this kind of data, though. Second, due to the small number
of samples even after data augmentation only hold-out
validation could be implemented to compare the trained
models, as in k-fold-crossvalidation the dataset is split into k
equally sized folds for which the amount of data was not
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sufficient. Third, only a limited number of architectures and
hyperparameters could be tested over comparatively few
epochs due do computational resource constraints, as all
computations were required to terminate within a reasonable
time frame on a CPU.

To summarize our findings, this paper represents three major
contributions to the biomedical image analysis literature.
First, to the best of our knowledge, it presents the first study
on the use of one imaging modality as a ground truth for
building prediction models from another imaging modality.
Second, we offer a framework for an affordable, easily
implementable prediction model which is based on state-of-
the art computer vision algorithms sin the preoperative
setting for advanced hepatic tumor surgery. Third, we
identified good hyperparameter configurations and data
augmentation schemes for the predictive analysis of
abdominal CT-images using convolutional neural networks.

5Conclusion

Recent advances in the development of convolutional neural
network architectures and deep learning libraries allow that
these algorithms now perform tasks which were previously
the exclusive domain of human experts. We showed this in
case, that simple models yield comparative results to deep
models initialized with pre-trained models from Imagenet,
where random initialization may be the best choice.
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