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Abstract: Algorithms for automated analysis of intravascular
ultrasound (IVUS) images can be disturbed by guidewires,
which are often encountered when treating bifurcations in
percutaneous coronary interventions. Detecting guidewires in
advance can therefore help avoiding potential errors. This task
is not trivial, since guidewires appear rather small compared
to other relevant objects in IVUS images. We employed CNNs
with additional multi-task learning as well as different
guidewire-specific regularizations to enable and improve
guidewire detection. In this context, we developed a network
block which generates heatmaps that highlight guidewires
without the need of localization annotations. The guidewire
detection results reach values of 0.931 in terms of the F1-score
and 0.996 in terms of area under curve (AUC). Comparing
thresholded guidewire heatmaps with ground truth
segmentation masks leads to a Dice score of 23.1 % and an
average Hausdorff distance of 1.45 mm. Guidewire detection
has proven to be a task that CNNs can handle quite well.
Employing multi-task learning and guidewire-specific
regularizations further improve detection results and enable
generation of heatmaps that indicate the position of guidewires
without actual labels.

Keywords: Multi-task learning, Coronary artery, Vessel,
Heatmap, Regularization, Segmentation.

https://doi.org/10.1515/cdbme-2021-1023

*Corresponding author: Lennart Bargsten: Hamburg University
of Technology, Institute of Medical Technology and Intelligent
Systems, Hamburg, Germany, E-mail: lennart.bargsten@tuhh.de
Daniel Klisch, Alexander Schlaefer: Hamburg University of
Technology, Institute of Medical Technology and Intelligent
Systems, Hamburg, Germany

Katharina A. Riedl, Fabian J. Brunner, Stefan Blankenberg,
Moritz Seiffert: Department of Cardiology, University Heart &
Vascular Center Hamburg, Hamburg, Germany

Tobias Wissel, Michael Grass: Philips Research - Hamburg,
Germany

Klaus Schaefers: Philips Research - Eindhoven, The
Netherlands

1 Introduction

Intravascular ultrasound (IVUS) is a widely used imaging
modality for planning and performing percutaneous coronary
interventions. Automated analysis of IVUS images can help
streamlining the clinical workflow by avoiding time-
consuming manual delineations of important structures to be
quantified or by enabling detection of hardly visible objects.
This includes segmentation of lumen and vessel wall
[1,5,9,10] as well as detection of calcifications or stents
[2,7,8]

When treating bifurcations, two guidewires are often
used, resulting in a guidewire appearing in IVUS sequences.
These can lead to artifacts which complicate interpretation of
image content. Automatic guidewire detection would therefore
provide valuable information to physicians. Furthermore,
image processing algorithms could produce meaningless
results due to the presence of a guidewire, as its bright
appearance could lead to false findings in other tasks, e.g.,
calcium or stent segmentation. To prevent such behavior by
taking targeted countermeasures, it would be necessary to
detect guidewires automatically beforehand.

Our contribution is twofold. First, we show that guidewire
detection is feasible by means of convolutional neural
networks (CNNs). Second, we developed a novel CNN block
that transforms a feature map into a single output neuron for
leveraging guidewire detection with multi-task learning using
auxiliary lumen and vessel wall segmentation labels. This
method additionally enables producing heatmaps which
localize guidewires without localization labels for training. To
further enhance heatmap generation, we make use of
regularization techniques that take into account guidewire
brightness and geometry.
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Figure 1: Exemplary images from the guidewire (left) as well as the lumen and vessel wall (right) segmentation dataset. Lumen is
indicated by yellow color, vessel wall by red color. The first row shows images in Cartesian view. The second row shows the same images

transformed into polar coordinates.

2 Methods and material

2.1 Datasets

We collected three distinct IVUS datasets. The first set
consists of 22,213 images from 23 patients with corresponding
binary guidewire detection labels (guidewire present or not).
The second dataset consists of 165 images from 9 patients with
corresponding guidewire segmentation masks. The third set
comprises 410 images from 22 patients with corresponding
segmentation annotations delineating lumen and vessel wall.
We will call this dataset “lumen-wall” throughout the rest of
this work. The annotations were made by an experienced
cardiologist. All images have a size of 500x500 pixels and
were acquired with a 20 MHz phased array Eagle Eye
Platinum probe (Philips Healthcare, San Diego, USA). Figure
1 depicts some exemplary images from both segmentation
datasets in Cartesian view (first row) and transformed into
polar coordinates (second row).

2.2 CNN architectures

For detection without auxiliary data (baseline), we used an
encoder-CNN with two residual blocks [4] per downsampling
stage. For multi-task learning with auxiliary lumen and vessel
wall segmentation data as well as generating guidewire
heatmaps, we used an encoder-decoder CNN similar to U-Net
[6] but comprising residual blocks (HeatPool CNN). Sketches
of the architectures are depicted in Figure 2. In the case of
multi-task learning with auxiliary segmentation labels, the
network outputs four masks. Three for lumen and vessel wall
segmentation and a single mask for guidewire detection. The

former three masks were obtained by applying softmax. The
latter mask serves as a guidewire heatmap and is transformed
into a single neuron by the HeatPool block explained in the
next section. For visualization, the heatmap is transformed
with a sigmoid function and thresholded at 0.5.

2.3 Heatmapping via pooling

To leverage guidewire detection with auxiliary images and
corresponding segmentation masks, we developed a simple
CNN block that transforms a feature map into a single
detection neuron. This block comprises an average pooling
layer followed by a max pooling layer, both with window size
and stride equal to the square root of the spatial input feature
map size. Experiments revealed that these feature maps
highlight regions near the object which the network is trained
to detect. Because it generates some kind of heatmap via two
pooling layers, we call this block HeatPool. See Figure 2 for a
sketch of the HeatPool block (bottom right corner). For
visualization, the heatmaps were transformed with a sigmoid
function and thresholded at 0.5.

2.4 Regularizations

In order to improve the placement of highlighted regions in the
guidewire heatmap, we added auxiliary regularization terms to
the overall loss function. These make use of gray value
distributions of input images and the geometry of guidewires.
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Figure 2: Sketches of CNN architectures used for guidewire detection. The HeatPool CNN can be used with and without multi-task

learning by auxiliary segmentation data.

2.4.1 Brightness regularization

In IVUS images, guidewires pretty much always appear as
bright spots (see Figures 1 and 3). We therefore developed a
loss function for penalizing heatmaps which highlight dark
regions of the image. Since we standardize images before
feeding them into the CNNSs, all pixels with gray values below
average are negative. This can be used to define the following
loss function for image locations x:

L, = —mean, min {p(x) - 1(x), 0} 1)

with heatmap value p(x) € [0,1] and input image gray value

I1(x).

2.4.2 Convex regularization

Since the guidewire appears convex in IVUS images, the area
highlighting the guidewire in the generated heatmaps should
also be convex. A set X is convex if and only if

a+(b—a) teX 2

for all pointsa, b € X and t € [0, 1]. This means that for any
two points in X all points on the line connecting the two points
belong to X as well. In the case of our heatmap, we can define
the following loss as a differentiable approximation of the
convexity condition:

L, = meang, {p(@p()(1 - pla+ (b -a) )} (3)

However, calculating this expression for all possible a, b and
t is way too expensive. We therefore used an approximation
by calculating 16 random combinations of a, b and t for
locations x in the heatmap with values p(x) > 0.1. This
approach is meaningful since p(x) appears to be near zero for
most of the image.

2.5 Training and evaluation

We split the datasets as follows:

—  Guidewire detection: 19459 images from 20 patients for
training and 2754 images from 5 patients for testing

—  Lumen-wall segmentation: 262 images from 18 patients
for training and 57 images from 4 patients for testing

The guidewire segmentation dataset was used only for
assessing the heatmaps, not for training.

We trained all methods with eight-fold cross-validation
and tested the best performing network of every fold with the
distinct test sets. No patient appeared in both training and test
set. If ground truth data was not available during multi-task
training, the corresponding term in the loss function was set to
zero. For example, when an image from the guidewire
detection dataset was fed into the network, the loss term for
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Figure 3: Exemplary thresholded guidewire heatmaps and corresponding ground truth segmentation masks for the case of HeatPool
CNN with combined brightness and convex regularization. Heatmap segmentations are depicted magenta. Ground truth segmentation
contours are shown as green dashed lines. Results of a similar heatmapping technique [11] are shown in cyan.

Table 1: Guidewire recognition results measured by F1-score and
AUC. Multi-task learning and regularization methods for
heatmaps are not applicable to the baseline detection model.

model m-t reg. Fl-score [%] AUC [%0]
baseline nla n/a 776 £8.6 99.2+0.5
no 884+ 16.7 982+27
o brightness 72.1 + 32.5 96.8 +5.4
convex 893+7.7 982+35
both 85.6+57 988+14
HeatPool
no 82.5+23.0 953+10.7
yes brightness 93.1+5.3 99.6 + 0.6
convex 89.4+6.5 99.0+1.2
both  89.2+14.8 99.6+ 0.6

lumen-wall segmentation was set to zero because no ground
truth segmentation mask was available for this image. All
input images were resized to 256 x256 pixels and transformed
into polar coordinates. We performed on-the-fly data
augmentation by means of random shifts and horizontal flips.
For both detection and segmentation, we employed the cross-
entropy loss function extended with the presented
regularization terms in certain cases.

For evaluating guidewire detection performance, we used
the F1-score as well as the area under the receiver operating
characteristic curve (AUC). For assessing guidewire
localization of the resulting heatmaps, we used the guidewire
segmentation dataset which provides ground truth
segmentation masks. We calculated the Dice coefficient as a
measure of overlap and the average Hausdorff distance [3] as
a measure of edge alignment between ground truth and
thresholded heatmaps. The threshold was set to 0.5.

3 Results and discussion

Detection results based on F1-score and AUC are shown in
Table 1. The HeatPool CNN almost always outperforms the
baseline CNN in terms of the F1-score. An exception is the
case of brightness regularization without multi-task learning,
which also seems to be rather unstable leading to a large
variance. The best performing approach is HeatPool with
multi-task learning and brightness regularization which
outperforms the baseline CNN relatively by 20 % in terms of
the F1-score. The AUC is quite constant over all methods but
approaches with multi-task learning reach larger values on
average. HeatPool without regularization tends to be unstable
resulting in larger variances. HeatPool's improvements in F1-
score due to a larger network capacity cannot be ruled out
completely. However, adding multi-task learning and
regularizations improve the results further.

The generated heatmaps were thresholded at 0.5 and
compared to ground truth segmentation masks. The results are
shown in Table 2. Although not trained with guidewire
segmentation labels, a Dice score of 23.1 % is reached with
multi-task learning and brightness regularization. The best
average Hausdorff distance of 1.45 mm was obtained with
convex regularization. The variance of many results is quite
high. This shows that the quality of the generated heatmaps
varies a lot, e.g., heatmaps without highlighted areas but
present guidewire increase the error severely (half of image
size in case of the average Hausdorff distance). Exemplary
segmentations (magenta) are depicted in Figure 3 together
with ground truth segmentation masks (dashed green) and
results of a similar heatmapping technique [11]. It can be seen
that our predicted guidewire masks are much better localized.
Most of our masks fit well (first four columns), while others
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Table 2: Segmentation metrics of heatmaps measured by Dice
coefficient (Dice) and average Hausdorff distance (ave. HD).

regularization multi-task  Dice [%] ave. HD [mm]

no 8.6 +8.7 1.75 + 0.57
none
yes 13.2+9.0 196+ 0.38
i no 94+13.0 227+1.25
brightness
yes 23.1+12.9 150+ 0.35
no 151+89 215+ 045
convex
yes 158+89 1.45+0.28
both no 176 £ 146 1.51+0.26
0
yes 20.2+12.8 1.81+0.48

do not (fifths column) or are completely missing (last column).
A major problem seems to be ambiguities with other bright
areas in the lumen (column five). Hence, the presented
approach needs to be improved to provide appropriate results
with clinical relevance. One possibility would be to penalize
heatmaps which highlight more than a single region.

4 Conclusion

We showed that guidewire detection in intravascular
ultrasound (IVUS) images can successfully be performed by
convolutional neural networks (CNNs). This allows other,
more general IVUS image analysis algorithms to take targeted
countermeasures against potential errors due to presence of
guidewires. Furthermore, we presented a method which
generates heatmaps indicating locations of guidewires without
actual localization labels. This method works best when
adding an auxiliary lumen and vessel wall segmentation task
as well as guidewire-specific regularizations, which in the
same way improves guidewire detection performance.
However, to make this heatmapping approach clinically
applicable, e.g., for localizing calcifications, some limitations
have to be tackled in the future. In particular, incorrectly
highlighted bright ambiguous regions.
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