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Abstract: Algorithms for automated analysis of intravascular 

ultrasound (IVUS) images can be disturbed by guidewires, 

which are often encountered when treating bifurcations in 

percutaneous coronary interventions. Detecting guidewires in 

advance can therefore help avoiding potential errors. This task 

is not trivial, since guidewires appear rather small compared 

to other relevant objects in IVUS images. We employed CNNs 

with additional multi-task learning as well as different 

guidewire-specific regularizations to enable and improve 

guidewire detection. In this context, we developed a network 

block which generates heatmaps that highlight guidewires 

without the need of localization annotations. The guidewire 

detection results reach values of 0.931 in terms of the F1-score 

and 0.996 in terms of area under curve (AUC). Comparing 

thresholded guidewire heatmaps with ground truth 

segmentation masks leads to a Dice score of 23.1 % and an 

average Hausdorff distance of 1.45 mm. Guidewire detection 

has proven to be a task that CNNs can handle quite well. 

Employing multi-task learning and guidewire-specific 

regularizations further improve detection results and enable 

generation of heatmaps that indicate the position of guidewires 

without actual labels. 

Keywords: Multi-task learning, Coronary artery, Vessel, 

Heatmap, Regularization, Segmentation. 

1 Introduction 

Intravascular ultrasound (IVUS) is a widely used imaging 

modality for planning and performing percutaneous coronary 

interventions. Automated analysis of IVUS images can help 

streamlining the clinical workflow by avoiding time-

consuming manual delineations of important structures to be 

quantified or by enabling detection of hardly visible objects. 

This includes segmentation of lumen and vessel wall 

[1, 5, 9, 10] as well as detection of calcifications or stents 

[2, 7, 8] 

When treating bifurcations, two guidewires are often 

used, resulting in a guidewire appearing in IVUS sequences. 

These can lead to artifacts which complicate interpretation of 

image content. Automatic guidewire detection would therefore 

provide valuable information to physicians. Furthermore, 

image processing algorithms could produce meaningless 

results due to the presence of a guidewire, as its bright 

appearance could lead to false findings in other tasks, e.g., 

calcium or stent segmentation. To prevent such behavior by 

taking targeted countermeasures, it would be necessary to 

detect guidewires automatically beforehand. 

Our contribution is twofold. First, we show that guidewire 

detection is feasible by means of convolutional neural 

networks (CNNs). Second, we developed a novel CNN block 

that transforms a feature map into a single output neuron for 

leveraging guidewire detection with multi-task learning using 

auxiliary lumen and vessel wall segmentation labels. This 

method additionally enables producing heatmaps which 

localize guidewires without localization labels for training. To 

further enhance heatmap generation, we make use of 

regularization techniques that take into account guidewire 

brightness and geometry. 
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2 Methods and material 

2.1 Datasets 

We collected three distinct IVUS datasets. The first set 

consists of 22,213 images from 23 patients with corresponding 

binary guidewire detection labels (guidewire present or not). 

The second dataset consists of 165 images from 9 patients with 

corresponding guidewire segmentation masks. The third set 

comprises 410 images from 22 patients with corresponding 

segmentation annotations delineating lumen and vessel wall. 

We will call this dataset “lumen-wall” throughout the rest of 

this work. The annotations were made by an experienced 

cardiologist. All images have a size of 500×500 pixels and 

were acquired with a 20 MHz phased array Eagle Eye 

Platinum probe (Philips Healthcare, San Diego, USA). Figure 

1 depicts some exemplary images from both segmentation 

datasets in Cartesian view (first row) and transformed into 

polar coordinates (second row). 

2.2 CNN architectures 

For detection without auxiliary data (baseline), we used an 

encoder-CNN with two residual blocks [4] per downsampling 

stage. For multi-task learning with auxiliary lumen and vessel 

wall segmentation data as well as generating guidewire 

heatmaps, we used an encoder-decoder CNN similar to U-Net 

[6] but comprising residual blocks (HeatPool CNN). Sketches 

of the architectures are depicted in Figure 2. In the case of 

multi-task learning with auxiliary segmentation labels, the 

network outputs four masks. Three for lumen and vessel wall 

segmentation and a single mask for guidewire detection. The 

former three masks were obtained by applying softmax. The 

latter mask serves as a guidewire heatmap and is transformed 

into a single neuron by the HeatPool block explained in the 

next section. For visualization, the heatmap is transformed 

with a sigmoid function and thresholded at 0.5. 

2.3 Heatmapping via pooling 

To leverage guidewire detection with auxiliary images and 

corresponding segmentation masks, we developed a simple 

CNN block that transforms a feature map into a single 

detection neuron. This block comprises an average pooling 

layer followed by a max pooling layer, both with window size 

and stride equal to the square root of the spatial input feature 

map size. Experiments revealed that these feature maps 

highlight regions near the object which the network is trained 

to detect. Because it generates some kind of heatmap via two 

pooling layers, we call this block HeatPool. See Figure 2 for a 

sketch of the HeatPool block (bottom right corner). For 

visualization, the heatmaps were transformed with a sigmoid 

function and thresholded at 0.5. 

2.4 Regularizations 

In order to improve the placement of highlighted regions in the 

guidewire heatmap, we added auxiliary regularization terms to 

the overall loss function. These make use of gray value 

distributions of input images and the geometry of guidewires. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Exemplary images from the guidewire (left) as well as the lumen and vessel wall (right) segmentation dataset. Lumen is 

indicated by yellow color, vessel wall by red color. The first row shows images in Cartesian view. The second row shows the same images 

transformed into polar coordinates. 
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2.4.1 Brightness regularization 

In IVUS images, guidewires pretty much always appear as 

bright spots (see Figures 1 and 3). We therefore developed a 

loss function for penalizing heatmaps which highlight dark 

regions of the image. Since we standardize images before 

feeding them into the CNNs, all pixels with gray values below 

average are negative. This can be used to define the following 

loss function for image locations 𝑥: 

ℒ𝑏 = −mean𝑥min⁡{𝑝(𝑥) ∙ 𝐼(𝑥), 0}   (1) 

with heatmap value 𝑝(𝑥) ∈ [0,1] and input image gray value 

𝐼(𝑥). 

2.4.2 Convex regularization 

Since the guidewire appears convex in IVUS images, the area 

highlighting the guidewire in the generated heatmaps should 

also be convex. A set 𝑋 is convex if and only if 

𝑎 + (𝑏 − 𝑎) ∙ 𝑡 ∈ 𝑋           (2) 

for all points 𝑎, 𝑏⁡ ∈ ⁡𝑋 and 𝑡 ∈ [0, 1]. This means that for any 

two points in 𝑋 all points on the line connecting the two points 

belong to 𝑋 as well. In the case of our heatmap, we can define 

the following loss as a differentiable approximation of the 

convexity condition: 

ℒ𝑐 = mean𝑎,𝑏,𝑡{𝑝(𝑎)𝑝(𝑏)(1 − 𝑝(𝑎 + (𝑏 − 𝑎)⁡𝑡))}.⁡⁡⁡(3) 

However, calculating this expression for all possible 𝑎, 𝑏 and 

𝑡⁡is way too expensive. We therefore used an approximation 

by calculating 16 random combinations of 𝑎, 𝑏 and 𝑡 for  

locations 𝑥 in the heatmap with values 𝑝(𝑥) ⁡> ⁡0.1. This 

approach is meaningful since 𝑝(𝑥) appears to be near zero for 

most of the image. 

2.5 Training and evaluation 

We split the datasets as follows: 

 

− Guidewire detection: 19459 images from 20 patients for 

training and 2754 images from 5 patients for testing 

− Lumen-wall segmentation: 262 images from 18 patients 

for training and 57 images from 4 patients for testing 

 

The guidewire segmentation dataset was used only for 

assessing the heatmaps, not for training. 

We trained all methods with eight-fold cross-validation 

and tested the best performing network of every fold with the 

distinct test sets. No patient appeared in both training and test 

set. If ground truth data was not available during multi-task 

training, the corresponding term in the loss function was set to 

zero. For example, when an image from the guidewire 

detection dataset was fed into the network, the loss term for 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Sketches of CNN architectures used for guidewire detection. The HeatPool CNN can be used with and without multi-task 

learning by auxiliary segmentation data. 
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lumen-wall segmentation was set to zero because no ground 

truth segmentation mask was available for this image. All 

input images were resized to 256×256 pixels and transformed 

into polar coordinates. We performed on-the-fly data 

augmentation by means of random shifts and horizontal flips. 

For both detection and segmentation, we employed the cross-

entropy loss function extended with the presented 

regularization terms in certain cases. 

For evaluating guidewire detection performance, we used 

the F1-score as well as the area under the receiver operating 

characteristic curve (AUC). For assessing guidewire 

localization of the resulting heatmaps, we used the guidewire 

segmentation dataset which provides ground truth 

segmentation masks. We calculated the Dice coefficient as a 

measure of overlap and the average Hausdorff distance [3] as 

a measure of edge alignment between ground truth and 

thresholded heatmaps. The threshold was set to 0.5. 

3 Results and discussion 

Detection results based on F1-score and AUC are shown in 

Table 1. The HeatPool CNN almost always outperforms the 

baseline CNN in terms of the F1-score. An exception is the 

case of brightness regularization without multi-task learning, 

which also seems to be rather unstable leading to a large 

variance. The best performing approach is HeatPool with 

multi-task learning and brightness regularization which 

outperforms the baseline CNN relatively by 20 % in terms of 

the F1-score. The AUC is quite constant over all methods but 

approaches with multi-task learning reach larger values on 

average. HeatPool without regularization tends to be unstable 

resulting in larger variances. HeatPool's improvements in F1-

score due to a larger network capacity cannot be ruled out 

completely. However, adding multi-task learning and 

regularizations improve the results further. 

The generated heatmaps were thresholded at 0.5 and 

compared to ground truth segmentation masks. The results are 

shown in Table 2. Although not trained with guidewire 

segmentation labels, a Dice score of 23.1 % is reached with 

multi-task learning and brightness regularization. The best 

average Hausdorff distance of 1.45 mm was obtained with 

convex regularization. The variance of many results is quite 

high. This shows that the quality of the generated heatmaps 

varies a lot, e.g., heatmaps without highlighted areas but 

present guidewire increase the error severely (half of image 

size in case of the average Hausdorff distance). Exemplary 

segmentations (magenta) are depicted in Figure 3 together 

with ground truth segmentation masks (dashed green) and 

results of a similar heatmapping technique [11]. It can be seen 

that our predicted guidewire masks are much better localized. 

Most of our masks fit well (first four columns), while others 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Exemplary thresholded guidewire heatmaps and corresponding ground truth segmentation masks for the case of HeatPool 

CNN with combined brightness and convex regularization. Heatmap segmentations are depicted magenta. Ground truth segmentation 

contours are shown as green dashed lines. Results of a similar heatmapping technique [11] are shown in cyan. 

Table 1: Guidewire recognition results measured by F1-score and 

AUC. Multi-task learning and regularization methods for 

heatmaps are not applicable to the baseline detection model. 

model m-t reg. F1-score [%] AUC [%] 

baseline n/a n/a 77.6 ± 8.6 99.2 ± 0.5 

HeatPool 

no 

no 88.4 ± 16.7 98.2 ± 2.7 

brightness 72.1 ± 32.5 96.8 ± 5.4 

convex 89.3 ± 7.7 98.2 ± 3.5 

both 85.6 ± 5.7 98.8 ± 1.4 

yes 

no 82.5 ± 23.0 95.3 ± 10.7 

brightness 𝟗𝟑. 𝟏 ± 𝟓. 𝟑 𝟗𝟗. 𝟔 ± 𝟎. 𝟔 

convex 89.4 ± 6.5 99.0 ± 1.2 

both 89.2 ± 14.8 99.6 ± 0.6 
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do not (fifths column) or are completely missing (last column). 

A major problem seems to be ambiguities with other bright 

areas in the lumen (column five). Hence, the presented 

approach needs to be improved to provide appropriate results 

with clinical relevance. One possibility would be to penalize 

heatmaps which highlight more than a single region. 

4 Conclusion 

We showed that guidewire detection in intravascular 

ultrasound (IVUS) images can successfully be performed by 

convolutional neural networks (CNNs). This allows other, 

more general IVUS image analysis algorithms to take targeted 

countermeasures against potential errors due to presence of 

guidewires. Furthermore, we presented a method which 

generates heatmaps indicating locations of guidewires without 

actual localization labels. This method works best when 

adding an auxiliary lumen and vessel wall segmentation task 

as well as guidewire-specific regularizations, which in the 

same way improves guidewire detection performance. 

However, to make this heatmapping approach clinically 

applicable, e.g., for localizing calcifications, some limitations 

have to be tackled in the future. In particular, incorrectly 

highlighted bright ambiguous regions. 
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Table 2: Segmentation metrics of heatmaps measured by Dice 

coefficient (Dice) and average Hausdorff distance (ave. HD).  

regularization multi-task Dice [%] ave. HD [mm] 

none 
no 8.6 ± 8.7 1.75 ± 0.57 

yes 13.2 ± 9.0 1.96 ± 0.38 

brightness 
no 9.4 ± 13.0 2.27 ± 1.25 

yes 𝟐𝟑. 𝟏 ± 𝟏𝟐. 𝟗 1.50 ± 0.35 

convex 
no 15.1 ± 8.9 2.15 ± 0.45 

yes 15.8 ± 8.9 𝟏. 𝟒𝟓 ± 𝟎. 𝟐𝟖 

both 
no 17.6 ± 14.6 1.51 ± 0.26 

yes 20.2 ± 12.8 1.81 ± 0.48 

 


