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Abstract: Knowing the shape of vascular calcifications is 

crucial for appropriate planning and conductance of 

percutaneous coronary interventions. The clinical workflow 

can therefore benefit from automatic segmentation of calcified 

plaques in intravascular ultrasound (IVUS) images. To solve 

segmentation problems with convolutional neural networks 

(CNNs), large datasets are usually required. However, datasets 

are often rather small in the medical domain. Hence, 

developing and investigating methods for increasing CNN 

performance on small datasets can help on the way towards 

clinically relevant results. We compared two state-of-the-art 

CNN architectures for segmentation, U-Net and DeepLabV3, 

and investigated how incorporating auxiliary image data with 

vessel wall and lumen annotations improves the calcium 

segmentation performance by using these either for pre-

training or multi-task training. DeepLabV3 outperforms U-Net 

with up to 6.3 % by means of the Dice coefficient and 36.5 % 

by means of the average Hausdorff distance. Using auxiliary 

data improves the segmentation performance in both cases, 

whereas the multi-task approach outperforms the pre-training 

approach. The improvements of the multi-task approach in 

contrast to not using auxiliary data at all is 5.7 % for the Dice 

coefficient and 42.9 % for the average Hausdorff distance. 

Automatic segmentation of calcified plaques in IVUS images 

is a demanding task due to their relatively small size compared 

to the image dimensions and due to visual ambiguities with 

other image structures. We showed that this problem can 

generally be tackled by CNNs. Furthermore, we were able to 

improve the performance by a multi-task learning approach 

with auxiliary segmentation data. 

Keywords: Multi-task learning, Small dataset, Coronary 

artery, Vessel, Convolutional neural network. 

1 Introduction 

Intravascular ultrasound (IVUS) is an important and 

frequently used imaging modality in cardiac catheter 

laboratories. It enables assessing the morphology of vessel 

structures like lumen, vessel wall and plaque distribution. 

Intracoronary imaging has been proven to have a positive 

impact on planning and performing image guided 

percutaneous coronary interventions [13]. 

If calcified plaques are present, their volume and shape 

have to be determined to decide on appropriate treatment. 

Usually, the physician estimates these morphological features 

by delineating the plaque in multiple IVUS images. This is a 

rather time-consuming task and the results depend heavily on 

the experience of the physician. The automated segmentation 

of calcifications can therefore help streamlining the clinical 

workflow. So far, this task has been tackled by methods like 

energy-based contour models, shape-based techniques or 

thresholding [1, 14, 18]. In recent years, deep learning 

methods like convolutional neural networks (CNNs) have 

gained much importance due to their superior performance on 

automated analysis of medical images [5, 6, 10, 19]. 

Segmentation of lumen and vessel wall in IVUS images has 

also been tackled by CNNs in recent work [2, 11, 16, 17]. 

However, calcium segmentation with CNNs has not been 

studied so far. 

In order to perform sufficiently well, CNNs have to be 

trained with large amounts of annotated data. Creating 

annotations is a rather time-consuming task and has to be 

performed by clinical experts to ensure high quality. Hence, 

annotations are usually scarce in the medical domain. One 

possibility to increase the model performance despite the lack 

of data is transfer learning. Here, a CNN is pre-trained with 
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another dataset such that the model weights for the fine-tuning 

process are initialized advantageously. Another method is 

multi-task learning, where the CNN learns multiple tasks in 

parallel. Due to possible commonalities across tasks and the 

enlargement of the dataset, the network is likely to learn more 

meaningful features. Furthermore, it is initially unknown 

which network architectures are beneficial for the underlying 

task. Therefore, we compared two different network 

architectures: U-Net [12] and DeepLabV3 [4]. The dataset for 

our study comprises images with annotated calcifications as 

well as auxiliary images with annotated vessel wall and lumen. 

Our contribution is twofold. First, we show that 

segmentation of calcifications can successfully be performed 

by CNNs. Second, we investigated how incorporating 

auxiliary segmentation data of lumen and vessel wall improves 

calcium segmentation performance when using this data either 

for pre-training or for multi-task training.  

2 Methods and material 

2.1 Dataset 

Our dataset comprises several IVUS sequences of 23 cases in 

total with 620 annotated frames. 210 frames were annotated 

for calcifications and 410 frames were annotated for vessel 

wall and lumen. All annotations were made by an experienced 

cardiologist. Throughout the rest of this work, the calcification 

class is referred to as "calcium" and the vessel wall and lumen 

classes together are referred to as “wall-lumen”. There are no 

frames which exhibit both wall-lumen segmentation masks 

and calcium segmentation masks. 

All images were captured in a non-gated fashion with a 

20 MHz Eagle Eye Platinum phased array transducer (Philips 

Healthcare, San Diego, USA) and have a size of 500×500 

pixels. Figure 1 shows exemplary images and corresponding 

annotations. 

2.2 CNN architectures 

We compared two state-of-the-art CNN architectures for 

segmentation: U-Net [12] with residual blocks [8], which we 

call U-Net Res throughout the rest of this work, and 

DeepLabV3 [4] with a ResNet50 [8] backbone. See Figure 2 

for sketches of the networks and their building blocks. U-Net 

Res consists of three residual blocks per downscaling and 

upscaling stage. Downscaling is performed three times with 

strided convolutions whereas upscaling is performed with 

transposed convolutions (also called deconvolutions). The 

DeepLabV3 network uses a ResNet50 backbone with atrous 

(or dilated) convolutions and atrous spatial pyramid pooling 

[3]. Both networks have approximately 40 M parameters and 

perform three downsamplings in a forward pass. Hence, we 

can assume that the capacities of both networks are 

comparable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Sketches of CNN architectures used in this work. The 

first number in encode, decode and residual bottleneck block 

indicates repetitions. The second number indicates the number of 

output feature maps. Arrows pointing downwards indicate 

downsampling via strided convolutions. 

 

 

 

 

 

Figure 1: Exemplary images from our dataset and corresponding 

annotations. The left side shows images with calcium 

segmentation contours. The right side shows images with lumen 

(yellow) and vessel wall (red) segmentation contours. 
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2.3 CNN Training and evaluation 

For both CNN models, we investigated the following training 

schemes: 

1. Training on calcium labels only, 

2. Pre-training with wall-lumen labels and subsequent fine-

tuning with calcium labels, 

3. Multi-task training with calcium and wall-lumen labels in 

parallel. 

 

In addition, we applied all these training schemes to a 

DeepLabV3 network which was pre-trained on the COCO 

dataset [9]. This dataset comprises more than 200 k labelled 

natural images of 171 different classes. 

The calcium dataset was split into a training set 

comprising 153 images of 10 different cases and a test set 

comprising 57 images of 6 different cases. The wall-lumen 

dataset was split into a training set comprising 295 images of 

16 different cases and a test set comprising 115 images of 6 

different cases. The 6 cases of both test sets are identical for 

preventing data leakage. All images were resized to 256×256 

pixels. During training, an online data-augmentation pipeline 

was used to randomly flip and rotate the training images. We 

employed the generalized Dice loss [15], which is a 

differentiable version of the Dice coefficient with different 

weights for every segmentation class taking class imbalance 

into account. The weights are proportional to the inverse 

ground truth segmentation areas of the individual classes. For 

optimization we used Adam with a learning rate of 

ℓ = 2 ⋅ 10−4. 

We split the training set into three folds for performing 

three-fold cross-validation. Random network initializations 

usually lead to a larger variance in results when training with 

smaller datasets. To average these out, we repeated three-fold 

cross-validation ten times and reported the resulting mean and 

standard deviation on the independent test set. This procedure 

was performed for each network model and training scheme. 

We used the Dice coefficient and the average Hausdorff 

distance [7] as metrics for segmentation performance. 

3 Results and discussion 

Table 1 shows the calcium segmentation results divided 

according to the individual CNN models and training schemes. 

See also Figure 3 for exemplary images. It can be seen, that 

DeepLabV3 outperforms U-Net Res in all cases. A possible 

reason could be the use of atrous convolutions and atrous 

spatial pyramid pooling which are able to capture multi-scale 

information quite efficiently [4]. This could be beneficial for 

the task of calcium segmentation because calcified plaques 

appear in very different sizes and shapes. 

The multi-task learning approach led to the best 

segmentation performances for all models (𝑝 ≤  0.01 for 

Welch's t-test in all cases). In contrast to pre-training with the 

wall-lumen dataset, a parallel training with calcium and wall-

lumen labels is more likely to result in meaningful features 

extracted by the network. In the case of pre-training, the 

learned features tend to be forgotten during fine-tuning with 

the calcium labels and thus the networks lose generalizability. 

DeepLabV3 models with COCO-pre-training do not have 

a significant advantage in comparison to the respective models 

without COCO-pre-training (𝑝 ≥ 0.16 for Welch's t-test in all 

cases). This is a rather surprising result because models pre-

trained on large amounts of natural images usually outperform 

models without pre-training, even when dealing with medical 

images. We have two possible explanations. First, the 

ultrasound image data distribution deviates too much from the 

COCO image distribution. Second, shifting and scaling of 

input image pixel values, which is needed when using the 

Table 1: Calcium segmentation results of different CNN models by means of Dice coefficient and average Hausdorff distance. Bold 

values indicate best results. 

 model training scheme Dice coefficient [%] average Hausdorff distance [mm] 

 

baseline 

calcium only 57.30 ± 0.87 0.653 ± 0.055 

 wall-lumen pre-training 58.38 ± 2.05 0.526 ± 0.081 

 wall-lumen multi-task training 60.59 ± 1.81 0.451 ± 0.058 

 

DeepLabV3 

calcium only 60.89 ± 1.59 0.501 ± 0.093 

 wall-lumen pre-training 61.61 ± 1.20 0.494 ± 0.097 

 wall-lumen multi-task training 64.32 ± 1.09 𝟎. 𝟐𝟖𝟔 ± 𝟎. 𝟎𝟒𝟒 

 

DeepLabV3 COCO 

calcium only 61.79 ± 1.78 0.504 ± 0.093 

 wall-lumen pre-training 61.91 ± 1.22 0.488 ± 0.046 

 wall-lumen multi-task training 𝟔𝟒. 𝟓𝟏 ± 𝟎. 𝟕𝟎 0.304 ± 0.055 
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COCO-pre-trained model, transforms the ultrasound image 

distribution into a rather unfavorable representation. 

In the case of multi-task learning, we get an additional 

hyperparameter 𝜆 = 𝑤calcium
loss /𝑤calcium

loss  which determines the 

weighting ratio of the individual loss functions for calcium 

segmentation and wall-lumen segmentation. Figure 4 shows 

how the variation of 𝜆 affects the performances of both 

segmentation tasks. For wall-lumen segmentation, metrics are 

calculated as the mean of individual vessel wall and lumen 

segmentation metrics. As expected, the performance of wall-

lumen segmentation decreases for larger values of 𝜆 and 

saturates for 𝜆 ≤ 1. The performance of calcium segmentation 

has its peak around  𝜆 ≈ 1 in all cases. The calcium 

segmentation performance decreases for large values of 𝜆. 

This is likely due to the gradients of the wall-lumen 

segmentation loss having less influence on the extraction of 

meaningful image features. Interestingly, the calcium 

segmentation performance of U-Net Res does not drop very 

much for small values of 𝜆. It seems that in this case U-Net 

Res is capable of generating meaningful features for both tasks 

although the gradients of the calcium segmentation loss are 

comparatively small. 

Finally, we want to report some technical metrics. All 

models were trained on an NVIDIA Titan RTX GPU. With a 

batch size of 12, inference time of DeepLabV3 was 

approximately 97 ms whereas the model occupied 5.4 GB of 

memory. U-Net only achieved an inference time of 268 ms and 

occupied 15.8 GB of memory. If we simulate deploying both 

models in clinical practice with a batch size of 1, DeepLabV3 

achieves an inference time of 30 ms and occupies 2.1 GB of 

memory. U-Net achieves 26 ms of inference time and occupies 

3.0 GB of memory. This means that both networks are 

basically able to provide results in real time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Results for different weighting ratios 𝜆 of the multi-task loss functions for calcium segmentation and wall-lumen segmentation 

(mean of vessel wall and lumen metrics). Note the different scales of the vertical axes. Error bars indicate two standard deviations. 

   

   

   

   

   

   

   

  

  

  

  

  

  

  

  

  

  

             

 

                          
                                          

 

    

    

    

    

   

  

  

  

  

  

  

  

             

 

                                 
                                          

 

    

    

    

    

   

  

  

  

  

  

  

  

             

 

                                      
                                          

 

   

   

   

   

   

   

  

  

  

  

  

  

  

  

  

  

             

 

                             
                                          

   

   

   

   

   

  

  

  

  

  

  

  

             

 

                              
                                          

   

   

   

   

   

  

  

  

  

  

  

  

             
 

                                   
                                          

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Exemplary calcium segmentation results. Green dashed lines depict ground truth. Blue lines depict results by DeepLabV3 

trained with calcium data only. Red lines depict results by DeepLabV3 with multi-task training (proposed). 
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4 Conclusion 

In this work, we demonstrated that CNNs are capable of 

segmenting calcifications in intravascular ultrasound (IVUS) 

images. DeepLabV3 outperformed U-Net Res in all training 

schemes, although both had approximately the same capacity. 

We showed that incorporating auxiliary lumen and vessel wall 

segmentation data by means of multi-task training increased 

the performance significantly. Using the auxiliary data for pre-

training only led to minor improvements. 

Due to the small size of calcifications in contrast to the 

whole IVUS image, even small wrongly classified areas lead 

to large performance decreases. In order to achieve a plaque 

quantification accuracy which is sufficient for clinical 

applications, future research should focus on increasing the 

robustness of corresponding deep learning methods. This 

could be accomplished by larger datasets or the incorporation 

of further auxiliary tasks like plaque classification. 
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