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Abstract: Knowing the shape of vascular calcifications is
crucial for appropriate planning and conductance of
percutaneous coronary interventions. The clinical workflow
can therefore benefit from automatic segmentation of calcified
plaques in intravascular ultrasound (IVUS) images. To solve
segmentation problems with convolutional neural networks
(CNNs), large datasets are usually required. However, datasets
are often rather small in the medical domain. Hence,
developing and investigating methods for increasing CNN
performance on small datasets can help on the way towards
clinically relevant results. We compared two state-of-the-art
CNN architectures for segmentation, U-Net and DeepLabV3,
and investigated how incorporating auxiliary image data with
vessel wall and lumen annotations improves the calcium
segmentation performance by using these either for pre-
training or multi-task training. DeepLabV3 outperforms U-Net
with up to 6.3 % by means of the Dice coefficient and 36.5 %
by means of the average Hausdorff distance. Using auxiliary
data improves the segmentation performance in both cases,
whereas the multi-task approach outperforms the pre-training
approach. The improvements of the multi-task approach in
contrast to not using auxiliary data at all is 5.7 % for the Dice
coefficient and 42.9 % for the average Hausdorff distance.
Automatic segmentation of calcified plaques in IVUS images
is a demanding task due to their relatively small size compared
to the image dimensions and due to visual ambiguities with
other image structures. We showed that this problem can
generally be tackled by CNNs. Furthermore, we were able to
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improve the performance by a multi-task learning approach
with auxiliary segmentation data.
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1 Introduction

Intravascular ultrasound (IVUS) is an important and
frequently used imaging modality in cardiac catheter
laboratories. It enables assessing the morphology of vessel
structures like lumen, vessel wall and plaque distribution.
Intracoronary imaging has been proven to have a positive
impact on planning and performing image guided
percutaneous coronary interventions [13].

If calcified plaques are present, their volume and shape
have to be determined to decide on appropriate treatment.
Usually, the physician estimates these morphological features
by delineating the plaque in multiple IVUS images. This is a
rather time-consuming task and the results depend heavily on
the experience of the physician. The automated segmentation
of calcifications can therefore help streamlining the clinical
workflow. So far, this task has been tackled by methods like
energy-based contour models, shape-based techniques or
thresholding [1, 14, 18]. In recent years, deep learning
methods like convolutional neural networks (CNNs) have
gained much importance due to their superior performance on
automated analysis of medical images [5, 6, 10, 19].
Segmentation of lumen and vessel wall in IVUS images has
also been tackled by CNNs in recent work [2, 11, 16, 17].
However, calcium segmentation with CNNs has not been
studied so far.

In order to perform sufficiently well, CNNs have to be
trained with large amounts of annotated data. Creating
annotations is a rather time-consuming task and has to be
performed by clinical experts to ensure high quality. Hence,
annotations are usually scarce in the medical domain. One
possibility to increase the model performance despite the lack
of data is transfer learning. Here, a CNN is pre-trained with
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Figure 1: Exemplary images from our dataset and corresponding

annotations. The left side shows images with calcium
segmentation contours. The right side shows images with lumen
(yellow) and vessel wall (red) segmentation contours.

another dataset such that the model weights for the fine-tuning
process are initialized advantageously. Another method is
multi-task learning, where the CNN learns multiple tasks in
parallel. Due to possible commonalities across tasks and the
enlargement of the dataset, the network is likely to learn more
meaningful features. Furthermore, it is initially unknown
which network architectures are beneficial for the underlying
task. Therefore, we compared two different network
architectures: U-Net [12] and DeepLabV3 [4]. The dataset for
our study comprises images with annotated calcifications as
well as auxiliary images with annotated vessel wall and lumen.

Our contribution is twofold. First, we show that
segmentation of calcifications can successfully be performed
by CNNs. Second, we investigated how incorporating
auxiliary segmentation data of lumen and vessel wall improves
calcium segmentation performance when using this data either
for pre-training or for multi-task training.

2 Methods and material

2.1 Dataset

Our dataset comprises several IVUS sequences of 23 cases in
total with 620 annotated frames. 210 frames were annotated
for calcifications and 410 frames were annotated for vessel
wall and lumen. All annotations were made by an experienced
cardiologist. Throughout the rest of this work, the calcification
class is referred to as "calcium™ and the vessel wall and lumen
classes together are referred to as “wall-lumen”. There are no
frames which exhibit both wall-lumen segmentation masks
and calcium segmentation masks.

All images were captured in a non-gated fashion with a
20 MHz Eagle Eye Platinum phased array transducer (Philips
Healthcare, San Diego, USA) and have a size of 500x500
pixels. Figure 1 shows exemplary images and corresponding
annotations.
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Figure 2: Sketches of CNN architectures used in this work. The
first number in encode, decode and residual bottleneck block
indicates repetitions. The second number indicates the number of
output feature maps. Arrows pointing downwards indicate
downsampling via strided convolutions.

2.2 CNN architectures

We compared two state-of-the-art CNN architectures for
segmentation: U-Net [12] with residual blocks [8], which we
call U-Net Res throughout the rest of this work, and
DeepLabV3 [4] with a ResNet50 [8] backbone. See Figure 2
for sketches of the networks and their building blocks. U-Net
Res consists of three residual blocks per downscaling and
upscaling stage. Downscaling is performed three times with
strided convolutions whereas upscaling is performed with
transposed convolutions (also called deconvolutions). The
DeepLabV3 network uses a ResNet50 backbone with atrous
(or dilated) convolutions and atrous spatial pyramid pooling
[3]. Both networks have approximately 40 M parameters and
perform three downsamplings in a forward pass. Hence, we
can assume that the capacities of both networks are
comparable.
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Table 1: Calcium segmentation results of different CNN models by means of Dice coefficient and average Hausdorff distance. Bold

values indicate best results.

model training scheme Dice coefficient [%)] average Hausdorff distance [mm)]
calcium only 57.30 £ 0.87 0.653 + 0.055
baseline wall-lumen pre-training 58.38 + 2.05 0.526 + 0.081
wall-lumen multi-task training 60.59 + 1.81 0.451 + 0.058
calcium only 60.89 + 1.59 0.501 £+ 0.093
DeepLabV3 wall-lumen pre-training 61.61+1.20 0.494 + 0.097
wall-lumen multi-task training 64.32 + 1.09 0.286 + 0.044
calcium only 61.79 + 1.78 0.504 + 0.093
DeepLabV3 COCO wall-lumen pre-training 6191 + 1.22 0.488 + 0.046
wall-lumen multi-task training 64.511+0.70 0.304 + 0.055

2.3 CNN Training and evaluation

For both CNN models, we investigated the following training

schemes:

1. Training on calcium labels only,

2. Pre-training with wall-lumen labels and subsequent fine-
tuning with calcium labels,

3. Multi-task training with calcium and wall-lumen labels in
parallel.

In addition, we applied all these training schemes to a
DeepLabV3 network which was pre-trained on the COCO
dataset [9]. This dataset comprises more than 200 k labelled
natural images of 171 different classes.

The calcium dataset was split into a training set
comprising 153 images of 10 different cases and a test set
comprising 57 images of 6 different cases. The wall-lumen
dataset was split into a training set comprising 295 images of
16 different cases and a test set comprising 115 images of 6
different cases. The 6 cases of both test sets are identical for
preventing data leakage. All images were resized to 256256
pixels. During training, an online data-augmentation pipeline
was used to randomly flip and rotate the training images. We
employed the generalized Dice loss [15], which is a
differentiable version of the Dice coefficient with different
weights for every segmentation class taking class imbalance
into account. The weights are proportional to the inverse
ground truth segmentation areas of the individual classes. For
optimization we used Adam with a learning rate of
£=2-10"%

We split the training set into three folds for performing
three-fold cross-validation. Random network initializations
usually lead to a larger variance in results when training with
smaller datasets. To average these out, we repeated three-fold
cross-validation ten times and reported the resulting mean and
standard deviation on the independent test set. This procedure

was performed for each network model and training scheme.
We used the Dice coefficient and the average Hausdorff
distance [7] as metrics for segmentation performance.

3 Results and discussion

Table 1 shows the calcium segmentation results divided
according to the individual CNN models and training schemes.
See also Figure 3 for exemplary images. It can be seen, that
DeepLabV3 outperforms U-Net Res in all cases. A possible
reason could be the use of atrous convolutions and atrous
spatial pyramid pooling which are able to capture multi-scale
information quite efficiently [4]. This could be beneficial for
the task of calcium segmentation because calcified plaques
appear in very different sizes and shapes.

The multi-task learning approach led to the best
segmentation performances for all models (p < 0.01 for
Welch's t-test in all cases). In contrast to pre-training with the
wall-lumen dataset, a parallel training with calcium and wall-
lumen labels is more likely to result in meaningful features
extracted by the network. In the case of pre-training, the
learned features tend to be forgotten during fine-tuning with
the calcium labels and thus the networks lose generalizability.

DeepLabV3 models with COCO-pre-training do not have
a significant advantage in comparison to the respective models
without COCO-pre-training (p = 0.16 for Welch's t-test in all
cases). This is a rather surprising result because models pre-
trained on large amounts of natural images usually outperform
models without pre-training, even when dealing with medical
images. We have two possible explanations. First, the
ultrasound image data distribution deviates too much from the
COCO image distribution. Second, shifting and scaling of
input image pixel values, which is needed when using the
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Figure 3: Exemplary calcium segmentation results. Green dashed lines depict ground truth. Blue lines depict results by DeepLabV3
trained with calcium data only. Red lines depict results by DeepLabV3 with multi-task training (proposed).
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Figure 4: Results for different weighting ratios 1 of the multi-task loss functions for calcium segmentation and wall-lumen segmentation
(mean of vessel wall and lumen metrics). Note the different scales of the vertical axes. Error bars indicate two standard deviations.

COCO-pre-trained model, transforms the ultrasound image
distribution into a rather unfavorable representation.

In the case of multi-task learning, we get an additional
hyperparameter A = w'%s /wloss — which determines the
weighting ratio of the individual loss functions for calcium
segmentation and wall-lumen segmentation. Figure 4 shows
how the variation of A affects the performances of both
segmentation tasks. For wall-lumen segmentation, metrics are
calculated as the mean of individual vessel wall and lumen
segmentation metrics. As expected, the performance of wall-
lumen segmentation decreases for larger values of A and
saturates for A < 1. The performance of calcium segmentation
has its peak around A =1 in all cases. The calcium
segmentation performance decreases for large values of A.
This is likely due to the gradients of the wall-lumen
segmentation loss having less influence on the extraction of
meaningful image features. Interestingly, the calcium

segmentation performance of U-Net Res does not drop very
much for small values of A. It seems that in this case U-Net
Res is capable of generating meaningful features for both tasks
although the gradients of the calcium segmentation loss are
comparatively small.

Finally, we want to report some technical metrics. All
models were trained on an NVIDIA Titan RTX GPU. With a
batch size of 12, inference time of DeepLabV3 was
approximately 97 ms whereas the model occupied 5.4 GB of
memory. U-Net only achieved an inference time of 268 ms and
occupied 15.8 GB of memory. If we simulate deploying both
models in clinical practice with a batch size of 1, DeepLabV3
achieves an inference time of 30 ms and occupies 2.1 GB of
memory. U-Net achieves 26 ms of inference time and occupies
3.0 GB of memory. This means that both networks are
basically able to provide results in real time.
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4 Conclusion

In this work, we demonstrated that CNNs are capable of
segmenting calcifications in intravascular ultrasound (IVUS)
images. DeepLabV3 outperformed U-Net Res in all training
schemes, although both had approximately the same capacity.
We showed that incorporating auxiliary lumen and vessel wall
segmentation data by means of multi-task training increased
the performance significantly. Using the auxiliary data for pre-
training only led to minor improvements.

Due to the small size of calcifications in contrast to the
whole IVUS image, even small wrongly classified areas lead
to large performance decreases. In order to achieve a plaque
quantification accuracy which is sufficient for clinical
applications, future research should focus on increasing the
robustness of corresponding deep learning methods. This
could be accomplished by larger datasets or the incorporation
of further auxiliary tasks like plaque classification.
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