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Abstract: Medulloblastoma (MB) is a primary central
nervous system tumor and the most common malignant brain
cancer among children.  Neuropathologists perform
microscopic inspection of histopathological tissue slides under
a microscope to assess the severity of the tumor. This is a time-
consuming task and often infused with observer variability.
Recently, pre-trained convolutional neural networks (CNN)
have shown promising results for MB subtype classification.
Typically, high-resolution images are divided into smaller tiles
for classification, while the size of the tiles has not been
systematically evaluated. We study the impact of tile size and
input strategy and classify the two major histopathological
subtypes—Classic and Desmoplastic/Nodular. To this end, we
use recently proposed EfficientNets and evaluate tiles with
increasing size combined with various downsampling scales.
Our results demonstrate using large input tiles pixels followed
by intermediate downsampling and patch cropping
significantly improves MB classification performance. Our
top-performing method achieves the AUC-ROC value of
90.90% compared to 84.53% using the previous approach with
smaller input tiles.
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1 Introduction

Medulloblastoma (MB) is the most common malignant brain
tumor in children and a major cause of morbidity, as well as
mortality in pediatric oncology [15]. All MBs are classified as
Grade 1V tumors by the World Health Organization (WHO)
[10], indicating they are invasive and fast-growing. The 2016
edition of the World Health Organization Classification of
Tumors of the Central Nervous System (CNS) has defined four
histological subtypes of MB [10, 12]— classic type (CMB),
desmoplastic/nodular type (DN), MB with extensive
nodularity (MBEN), and large cell anaplastic MB (LCA).
Each subtype is associated with different prognoses and
therapies, while early and precise diagnosis is vital for
increasing the survival rates for patients [13].

For establishing a diagnosis, a tissue specimen or biopsy
sample is extracted from the suspected region of the brain.
Then, neuropathologists assess the tissue slides under the
microscope or digitize the magnified view to obtain an
extremely high-resolution image which is also called Whole
Slide Image (WSI). To detect and discern different types and
stages of tumors, they apply human-based decision rules based
on their skills, experience, and knowledge to detect and
discern different types and stages of tumors. However, the
visual assessment of such tissue scans is a laborious and time-
consuming task, which is also affected by inter-observer
variability [2]. These problems have emphasized the
requirement of automated decision support tool [17].

One way to implement automated classification of MB
subtypes is by means of manual feature extraction [5].
Although this approach allows for promising results, manual
feature extraction is task-dependent and requires strong
domain expertise. In contrast to that, Convolutional Neural
Networks (CNNs) provide a more general approach and it has
been demonstrated recently that CNNs outperform
conventional methods in various pathological image analysis
tasks [1,16]. While CNNs provide a general approach with
superior performance in many learning tasks, they require a
large number of training examples. However, in rare cancer
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such as MB, there are not enough training data available to
train any powerful CNN architecture. To counter this problem,
transfer learning is typically used in digital pathology [9, 14].

To mitigate the problem of scant training examples in MB
classification, a recent study has compared various benchmark
CNN architectures together with transfer learning [3]. The
study demonstrates that EfficientNets [18] with a larger input
resolution outperform classical CNN architectures with
smaller input resolutions. However, pre-trained CNNs are
optimized for a fixed input resolution, e.g., 224 x 224 pixels
[18], which conflicts with the high-resolution WSIs. Hence,
WSiIs are typically divided into several thousand tiles [1, 7],
which are processed with a deep learning approach afterwards.
Here, the question arises which tile size to choose.

We systematically study the effect of tile size, image
downsampling, and input strategy for the task of MB subtype
classification using pre-trained CNNs. We use a data set with
WSI from 161 different patients and consider the task of
differentiating between types CMB and DN.

2 Materials and Methods

2.1 Data Set

We use a dataset collected from 12 clinical sites in Germany
from 1989-2011. All local institutional guidelines were
followed including informed consent from the patients. Slides
were stained by hematoxylin and eosin (H & E) and scanned
at the same institution with a magnification of 200x.
Neuropathologists have labeled the images as Classic (CMB)
or Desmoplastic/Nodular (DN). The data contains WSIs of
161 patients of which 103 cases are CMB and 58 are DN. Each
WSI has more than one cancerous region. To generate a data
set consisting of image tiles, neuropathologists examined the
WSIs and identified representative cancerous regions.
Afterwards, we extracted tiles with a size of 2000 x 2000
pixels from the cancerous regions. Each patient contains
multiple labeled tiles. There are 1574 tiles for 103 patients
with CMB and 1195 tiles for 58 patients with DN cases.

We evaluate three different extracted tile sizes (ht x w).
Given an extracted tile with a size of 2000 x 2000, we crop
larger tiles with a size of 4000 x 4000 pixels and 8000 x 8000
pixels such that the manually extracted tile is centered. In this
way, all sets share the same center area, while the large ones
also include more overall context. We evaluate our models
based on tile classification performance.

2.2 Deep Learning Methods

We follow the concept of a previous study on MB
classification [3] and consider pre-trained EfficientNets [18].
The key advantage of EfficientNets is the compound scaling
method, which uniformly scales network width, depth, and
input resolution starting with the baseline EfficientNet-BO.
Considering the findings of previous work [3], we focus on
EfficientNet-BO (E#Net-B0) with an input resolution of 224 x
224 and EfficientNet-B5 (E#Net-B5) with an input resolution
of 456 x 456. Note, we use architectures pre-trained on
ImageNet.

Next, we study the relation between tile size, input
strategy, and the corresponding classification performance.
Our general classification pipeline is shown in Figure 1.

Given the sets with different tile sizes, we first follow the
previous approach [3] and simply downsample an entire image
tile to the corresponding input resolution (hi < w;i) of the CNN.
This leads to extreme downsampling of the larger tiles,
especially for 8000 x 8000. Hence, we also consider an
additional input strategy, where we first downsample the
image tile to an inter-mediate resolution (A, X W,) larger than
the CNN input. Then, during training, we randomly crop input
patches (hi x wi) from the intermediate tiles, and during
evaluation we take multiple ordered crops and average the
predictions for an intermediate tile afterwards. We consider
three different square intermediate tile sizes h,, W, € {456,
1000, 2000}. Note, when we combine the extracted tiles with
a size of 2000 x 2000 with the intermediate tile size of 2000 x
2000 no downsampling is performed. We randomly split our
data based on patients and consider 10-fold cross-validation.
In each fold, data is divided into a training set comprising 139
patients, and a test and validation set comprising of 7 patients
each. The test and validation subsets all consist of five and two
cases for type CMB and DN, respectively. To counter class
imbalance during training, we weight the loss of the individual
classes inversely proportional to samples of each class. We
employ data augmentation during training using brightness,
contrast, saturation, and hue augmentation as well as random
horizontal and vertical flipping of the images. The training is
implemented with 300 epochs for all 10-folds with a batch size
of 15.

3 Results

We report the area under the receiver operating curve (AUC)
with 95% confidence intervals (CI) using bias-corrected and
accelerated bootstrapping with nci = 10,000 bootstrap samples
in Table 1. For testing of significance, we use a permutation
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Figure 1: Our classification pipeline for the histological subtypes classic (CMB) and desmoplastic/nodular (DN). A tile (h; x wy) is
extracted from the WSI and is then downsampled to a size of &, x W,. Afterwards, we take a randomly localized crop with the
size of the network’s input resolution h; x w; during training. For evaluation, we take n ordered crops and average all crop prediction

to obtain one final prediction y.

Table 1: Results for all experiments given in percent. The best
performing method is shown in bold. 95% ClIs are provided in
brackets. Note, the input resolution of E#Net-BO and E#Net-B5 are
224 x 224 px and 456 x 456 px, respectively.

E#Net-B0O E#Net-B5
Tile R, x W, AUC AUC
2000 224 x 224 80.24(77 — 83)[3] -
. 456 x 456 84.91(82 - 87) 84.53(81 - 87)[3]
1000 x 1000  84.29(82 - 87) 86.93(84 - 89)
2000 2000 x 2000  79.92(77 - 83) 81.73(79 - 84)
4000 224 x 224 82.67(81 - 86) -
N 456 x 456 82.97(79 - 85) 85.27(82 - 88)
1000 x 1000 84.03(82 - 87) 89.63(87 - 91)
4000 2000 x 2000  86.42(84 - 88) 90.90(89 - 93)
8000 224 x 224 77.72(74 - 80) -
y 456 x 456 82.95(79 - 85) 83.74(81 - 86)
1000 x 1000 84.03(82 - 86) 88.86(87 - 91)
8000 2000 x 2000  84.59(81 - 86) 90.15(88 - 92)

test with ne = 10,000 samples and a significance level of o =
5% [6]. Our results show that E#Net-B5 outperforms E#Net-
BO for all our experiments, except for an intermediate tile
resolution of 456 x 456. Also, our results demonstrate that
using a tile with size of 4000 x 4000 pixels, downsampled to
an intermediate size of 2000 x 2000 pixels works best and
significantly (p < 0.05) outperforms the previous approach [3]
that used a smaller tile size of 2000 x 2000 px downsampled
to 456 x 456 px.

4 Discussion

We consider MB subtype classification using pre-trained
EfficientNets and study the impact of input patches with
different scales and global context for this task. Our results in
Table 1 demonstrate that using the previous approach [3] with
larger tiles downsampled to the network input resolution only
led to minor performance improvements for a tile size of 4000
x 4000 px. However, for extremely large tiles (8000 x 8000
px) performance is even reduced. This indicates that using
larger tiles is beneficial, however, when too much
downsampling is performed relevant feature are lost. Similar,
when no downsampling is performed performance is reduced,
i.e., in the case of a tile size and an intermediate resolution of
2000 x 2000 px. This indicates that here the global context is
missing, while high resolution information is preserved. This
demands a method to preserve global context without
sacrificing the fine-grained details. Our results highlight that
taking larger tiles, followed by intermediate downsampling
and multi-cropping during training enables the right trade-off
between the exploitation of global context and the preservation
of detailed information. Our results demonstrate that this
significantly improves the classification performance. Also,
this superior performance might be linked to a simple version
of multiple-instance learning (MIL) [4]; the predictions are
averaged in our study which acts as a pooling function in MIL
terminologies. So far, we only consider MIL during
evaluation, and considering more advanced versions of MIL
during training like attention-based MIL [8] could lead to
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promising results. Also, WSI classification remains an open
challenge and could be addressed by combining our findings
with recent works on WSI classification [7, 11].

5 Conclusion

We address the task of MB tumor classification and study the
impact of input patches with different scales and global
contexts. Our results highlight that including more overall
image context is beneficial. However, simply downsampling
larger tiles that cover enlarged image areas directly to the input
resolution of a CNN does not lead to any performance
improvement. Instead, downsampling to an intermediate
resolution followed by a multi-cropping strategy significantly
boosts performance. Future work could focus on evaluating
more advanced MIL techniques and on classifying all subtypes
of MB using a larger data set.
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