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Abstract: Medulloblastoma (MB) is a primary central 

nervous system tumor and the most common malignant brain 

cancer among children. Neuropathologists perform 

microscopic inspection of histopathological tissue slides under 

a microscope to assess the severity of the tumor. This is a time-

consuming task and often infused with observer variability. 

Recently, pre-trained convolutional neural networks (CNN) 

have shown promising results for MB subtype classification. 

Typically, high-resolution images are divided into smaller tiles 

for classification, while the size of the tiles has not been 

systematically evaluated. We study the impact of tile size and 

input strategy and classify the two major histopathological 

subtypes—Classic and Desmoplastic/Nodular. To this end, we 

use recently proposed EfficientNets and evaluate tiles with 

increasing size combined with various downsampling scales. 

Our results demonstrate using large input tiles pixels followed 

by intermediate downsampling and patch cropping 

significantly improves MB classification performance. Our 

top-performing method achieves the AUC-ROC value of 

90.90% compared to 84.53% using the previous approach with 

smaller input tiles.  

Keywords: Transfer learning, convolutional neural networks, 

digital pathology, histopathology, medulloblastoma  

1 Introduction 

Medulloblastoma (MB) is the most common malignant brain 

tumor in children and a major cause of morbidity, as well as 

mortality in pediatric oncology [15]. All MBs are classified as 

Grade IV tumors by the World Health Organization (WHO) 

[10], indicating they are invasive and fast-growing. The 2016 

edition of the World Health Organization Classification of 

Tumors of the Central Nervous System (CNS) has defined four 

histological subtypes of MB [10, 12]— classic type (CMB), 

desmoplastic/nodular type (DN), MB with extensive 

nodularity (MBEN), and large cell anaplastic MB (LCA). 

Each subtype is associated with different prognoses and 

therapies, while early and precise diagnosis is vital for 

increasing the survival rates for patients [13].  

For establishing a diagnosis, a tissue specimen or biopsy 

sample is extracted from the suspected region of the brain. 

Then, neuropathologists assess the tissue slides under the 

microscope or digitize the magnified view to obtain an 

extremely high-resolution image which is also called Whole 

Slide Image (WSI). To detect and discern different types and 

stages of tumors, they apply human-based decision rules based 

on their skills, experience, and knowledge to detect and 

discern different types and stages of tumors. However, the 

visual assessment of such tissue scans is a laborious and time-

consuming task, which is also affected by inter-observer 

variability [2]. These problems have emphasized the 

requirement of automated decision support tool [17]. 

One way to implement automated classification of MB 

subtypes is by means of manual feature extraction [5]. 

Although this approach allows for promising results, manual 

feature extraction is task-dependent and requires strong 

domain expertise. In contrast to that, Convolutional Neural 

Networks (CNNs) provide a more general approach and it has 

been demonstrated recently that CNNs outperform 

conventional methods in various pathological image analysis 

tasks [1,16]. While CNNs provide a general approach with 

superior performance in many learning tasks, they require a 

large number of training examples. However, in rare cancer 
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such as MB, there are not enough training data available to 

train any powerful CNN architecture. To counter this problem, 

transfer learning is typically used in digital pathology [9, 14]. 

To mitigate the problem of scant training examples in MB 

classification, a recent study has compared various benchmark 

CNN architectures together with transfer learning [3]. The 

study demonstrates that EfficientNets [18] with a larger input 

resolution outperform classical CNN architectures with 

smaller input resolutions. However, pre-trained CNNs are 

optimized for a fixed input resolution, e.g., 224 × 224 pixels 

[18], which conflicts with the high-resolution WSIs. Hence, 

WSIs are typically divided into several thousand tiles [1, 7], 

which are processed with a deep learning approach afterwards. 

Here, the question arises which tile size to choose. 

We systematically study the effect of tile size, image 

downsampling, and input strategy for the task of MB subtype 

classification using pre-trained CNNs. We use a data set with 

WSI from 161 different patients and consider the task of 

differentiating between types CMB and DN. 

2 Materials and Methods 

2.1 Data Set 

We use a dataset collected from 12 clinical sites in Germany 

from 1989-2011. All local institutional guidelines were 

followed including informed consent from the patients. Slides 

were stained by hematoxylin and eosin (H & E) and scanned 

at the same institution with a magnification of 200x. 

Neuropathologists have labeled the images as Classic (CMB) 

or Desmoplastic/Nodular (DN). The data contains WSIs of 

161 patients of which 103 cases are CMB and 58 are DN. Each 

WSI has more than one cancerous region. To generate a data 

set consisting of image tiles, neuropathologists examined the 

WSIs and identified representative cancerous regions. 

Afterwards, we extracted tiles with a size of 2000 × 2000 

pixels from the cancerous regions. Each patient contains 

multiple labeled tiles. There are 1574 tiles for 103 patients 

with CMB and 1195 tiles for 58 patients with DN cases. 

We evaluate three different extracted tile sizes (ht × wt). 

Given an extracted tile with a size of 2000 × 2000, we crop 

larger tiles with a size of 4000 × 4000 pixels and 8000 × 8000 

pixels such that the manually extracted tile is centered. In this 

way, all sets share the same center area, while the large ones 

also include more overall context. We evaluate our models 

based on tile classification performance. 

2.2 Deep Learning Methods 

We follow the concept of a previous study on MB 

classification [3] and consider pre-trained EfficientNets [18]. 

The key advantage of EfficientNets is the compound scaling 

method, which uniformly scales network width, depth, and 

input resolution starting with the baseline EfficientNet-B0. 

Considering the findings of previous work [3], we focus on 

EfficientNet-B0 (E#Net-B0) with an input resolution of 224 × 

224 and EfficientNet-B5 (E#Net-B5) with an input resolution 

of 456 × 456. Note, we use architectures pre-trained on 

ImageNet. 

Next, we study the relation between tile size, input 

strategy, and the corresponding classification performance. 

Our general classification pipeline is shown in Figure 1.  

Given the sets with different tile sizes, we first follow the 

previous approach [3] and simply downsample an entire image 

tile to the corresponding input resolution (hi × wi) of the CNN. 

This leads to extreme downsampling of the larger tiles, 

especially for 8000 × 8000. Hence, we also consider an 

additional input strategy, where we first downsample the 

image tile to an inter-mediate resolution (ℎ̂𝑡 × 𝑤̂𝑡) larger than 

the CNN input. Then, during training, we randomly crop input 

patches (hi × wi) from the intermediate tiles, and during 

evaluation we take multiple ordered crops and average the 

predictions for an intermediate tile afterwards. We consider 

three different square intermediate tile sizes ℎ̂𝑡 ,  𝑤̂𝑡 ∈ {456, 

1000, 2000}. Note, when we combine the extracted tiles with 

a size of 2000 × 2000 with the intermediate tile size of 2000 × 

2000 no downsampling is performed. We randomly split our 

data based on patients and consider 10-fold cross-validation. 

In each fold, data is divided into a training set comprising 139 

patients, and a test and validation set comprising of 7 patients 

each. The test and validation subsets all consist of five and two 

cases for type CMB and DN, respectively. To counter class 

imbalance during training, we weight the loss of the individual 

classes inversely proportional to samples of each class. We 

employ data augmentation during training using brightness, 

contrast, saturation, and hue augmentation as well as random 

horizontal and vertical flipping of the images. The training is 

implemented with 300 epochs for all 10-folds with a batch size 

of 15. 

3 Results 

We report the area under the receiver operating curve (AUC) 

with 95% confidence intervals (CI) using bias-corrected and 

accelerated bootstrapping with nCI = 10,000 bootstrap samples 

in Table 1. For testing of significance, we use a permutation 
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Table 1: Results for all experiments given in percent. The best 

performing method is shown in bold. 95% CIs are provided in 

brackets. Note, the input resolution of E#Net-B0 and E#Net-B5 are 

224 × 224 px and 456 × 456 px, respectively. 

 

 

Tile 

 
ℎ̂𝑡 × 𝑤̂𝑡 

E#Net-B0 

AUC 

E#Net-B5 

AUC 

 2000 

× 

2000 

224 × 224 

456 × 456 

1000 × 1000 

2000 × 2000 

    80.24(77 – 83)[3] 

84.91(82 − 87) 

84.29(82 − 87) 

79.92(77 − 83) 

− 

    84.53(81 − 87)[3] 

86.93(84 − 89) 

81.73(79 − 84) 

4000 

× 

4000 

224 × 224 

456 × 456 

1000 × 1000 

  2000 × 2000 

82.67(81 − 86) 

82.97(79 − 85) 

84.03(82 − 87) 

86.42(84 − 88) 

− 

85.27(82 − 88) 

89.63(87 − 91) 

90.90(89 − 93) 

8000 

   × 

8000 

224 × 224 

456 × 456 

1000 × 1000 

  2000 × 2000 

77.72(74 − 80) 

82.95(79 − 85) 

84.03(82 − 86) 

84.59(81 − 86) 

− 

83.74(81 − 86) 

88.86(87 − 91) 

90.15(88 − 92) 

 

 

test with nP = 10,000 samples and a significance level of α = 

5% [6]. Our results show that E#Net-B5 outperforms E#Net-

B0 for all our experiments, except for an intermediate tile 

resolution of 456 × 456. Also, our results demonstrate that 

using a tile with size of 4000 × 4000 pixels, downsampled to 

an intermediate size of 2000 × 2000 pixels works best and 

significantly (p < 0.05) outperforms the previous approach [3] 

that used a smaller tile size of 2000 × 2000 px downsampled 

to 456 × 456 px. 

4 Discussion 

We consider MB subtype classification using pre-trained 

EfficientNets and study the impact of input patches with 

different scales and global context for this task. Our results in 

Table 1 demonstrate that using the previous approach [3] with 

larger tiles downsampled to the network input resolution only 

led to minor performance improvements for a tile size of 4000 

× 4000 px. However, for extremely large tiles (8000 × 8000 

px) performance is even reduced. This indicates that using 

larger tiles is beneficial, however, when too much 

downsampling is performed relevant feature are lost. Similar, 

when no downsampling is performed performance is reduced, 

i.e., in the case of a tile size and an intermediate resolution of 

2000 × 2000 px. This indicates that here the global context is 

missing, while high resolution information is preserved. This 

demands a method to preserve global context without 

sacrificing the fine-grained details. Our results highlight that 

taking larger tiles, followed by intermediate downsampling 

and multi-cropping during training enables the right trade-off 

between the exploitation of global context and the preservation 

of detailed information. Our results demonstrate that this 

significantly improves the classification performance. Also, 

this superior performance might be linked to a simple version 

of multiple-instance learning (MIL) [4]; the predictions are 

averaged in our study which acts as a pooling function in MIL 

terminologies. So far, we only consider MIL during 

evaluation, and considering more advanced versions of MIL 

during training like attention-based MIL [8] could lead to 

WSI
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Figure 1: Our classification pipeline for the histological subtypes classic (CMB) and desmoplastic/nodular (DN). A tile (ht × wt) is 

extracted from the WSI and is then downsampled to a size of  ℎ̂𝑡 × 𝑤̂𝑡 . Afterwards, we take a randomly localized crop with the 

size of the network’s input resolution hi × wi during training. For evaluation, we take n ordered crops and average all crop prediction 

to obtain one final prediction y. 
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promising results. Also, WSI classification remains an open 

challenge and could be addressed by combining our findings 

with recent works on WSI classification [7, 11].  

5 Conclusion  

We address the task of MB tumor classification and study the 

impact of input patches with different scales and global 

contexts. Our results highlight that including more overall 

image context is beneficial. However, simply downsampling 

larger tiles that cover enlarged image areas directly to the input 

resolution of a CNN does not lead to any performance 

improvement. Instead, downsampling to an intermediate 

resolution followed by a multi-cropping strategy significantly 

boosts performance. Future work could focus on evaluating 

more advanced MIL techniques and on classifying all subtypes 

of MB using a larger data set. 
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