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Abstract: The distinction between malignant and benign
tumors is essential to the treatment of cancer. The tissue's
elasticity can be used as an indicator for the required tissue
Optical coherence elastography (OCE)
probes have been proposed for needle insertions but have so
far lacked the necessary load sensing capabilities.

We present a novel OCE needle probe that provides

characterization.

simultaneous optical coherence tomography (OCT) imaging
and load sensing at the needle tip. We demonstrate the
application of the needle probe in indentation experiments on
gelatin phantoms with varying gelatin concentrations. We
further implement two deep learning methods for the end-to-
end sample characterization from the acquired OCT data.

We report the estimation of gelatin sample weight ratios [wt%]
in unseen samples with a mean error of 1.21 + 0.91 wt%. Both
evaluated deep learning models successfully provide sample
characterization with different advantages regarding the
accuracy and inference time.
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1 Introduction

The response to mechanical stress significantly varies for
different tissue types and cancerous tissues exhibit different
elasticities compared to their healthy counterpart [5]. Tissue
elasticity can therefore serve as a biomarker for tissue
characterization. Clinicians can feel for stiff inclusions
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associated with pathology but manual palpation is subjective
and feedback on local forces is difficult to acquire in modern
minimally invasive surgery (MIS). Instead, image-based
elastography has been proposed for the measurement of
elasticity in biological tissue by mapping local deformations
to an applied mechanical load. Ultrasound elastography [3]
and magnetic resonance elastography [11] have been
implemented for tissue characterization at a resolution of
hundreds of micrometers. In recent years, Optical coherence
elastography (OCE) has gained attention as an extension to
optical coherence tomography (OCT). OCT can help in the
detection of micrometer structures due to its high spatial
resolution of 1 pm to 10 pm [7]. OCE is commonly limited to
the application to superficial target regions due to the
maximum imaging depth of approximately 2 mm. But OCE
can be integrated in a needle probe to extend the application to
deeper target regions. Needle-based OCE has been proposed
with wave [9] and compression loading [8].
Compression-based OCE offers higher lateral resolution but
the lack of local load sensing within the previously proposed

shear

needle-probe  only  provides  qualitative  elasticity
measurements. Friction forces along the needle shaft are
superimposed with the local tip forces and a dedicated force
sensor located at the needle tip is required. Tissue
characterization is only realizable with a known relation to the
applied load. So far, sensors for the measurement of needle tip
forces [1] as well as needle-based OCT probes for guided
interventions [2] have been proposed exclusively.

In this work, we present a novel compression-based OCE
needle-probe with simultaneous load sensing and imaging
capabilities. We further propose the

characterization for compression-based OCE via deep learning

direct tissue
and demonstrate our methods on tissue mimicking gelatin gels.
A similar approach has recently shown success in shear wave
OCE [10]. The end-to-end characterization removes the need
for intermediate calculations of local displacement fields that
are otherwise needed for compression-based OCE.

3 Open Access. © 2021 The Author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 License.
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Figure 1: Left: Experimental setup with a schematic of the proposed needle probe. A force sensor and motion stage were used for the
indentation of the gelatin samples. The depth scan of the OCT system (blue line) visualized deformations of the epoxy sensor
(green) and the sample beyond. Right: Example recorded during the indentation of a single phantom. The deformation of the
sensor (interfaces marked by black and white arrow) provides information on the local tip load while the sample is simultaneously

imaged under deformation.

2 Materials and Methods

2.1 System Setup and OCT Data

Our custom built needle probe was designed as illustrated in
Figure 1. A single-mode glass fiber (SMF-28, Thorlabs
GmbH, GER) was embedded into a hollow needle and fixed
via a ferrule. A flat tip needle was used for the compression of
the sample and the distal end was fitted with a cylindrical
sensor. The sensor was cast out of a translucent epoxy resin
(NOA 63 and 1625, Norland Products Inc., USA). The end of
the optical fiber was angled at 8° to minimize common-path
reflections and provided a forward facing view that visualized
both the sensor and the sample. The needle probe was used for
the indentation of gelatin gels with simultaneous OCT imaging
under load. Axial scans (A-scans) were acquired at a sampling
rate of 5.5 kHz via the spectral domain OCT imaging system
(Telesto Telesto I, Thorlabs GmbH, GER). The flexible sensor
deformed upon indentation of the sample and the resulting
movement is proportional to the locally occurring load. A high
precision, linear translation stage (ZFS25B, Thorlabs GmbH,
GER) and a uniaxial force sensor (KD24s, ME-MeBsysteme
GmbH, GER) were used for the indentation of tissue
mimicking gelatin gels. Different weight ratios between
gelatin and water were used to produce the phantoms. The
weight ratio was used as a surrogate label for the elasticity and
the two terms are used interchangeably in the context of this
work.

2.2 Deep Learning Problem

We considered the end-to-end learning problem from
sequentially acquired 1D A-scans to the direct sample
characterization utilizing the varying resistance to deformation
for each sample elasticity. An image M; € R™™ assembled from
a temporal sequence n of consecutive A-scans A; € R™ was
directly mapped to the gelatin weight ratio of the imaged
sample under load. It was considered as a continuous variable
and the sample characterization was consequently handled as
a regression problem.

2.3 Network Architectures

We compared two network architectures for the mapping of M;
to the gelatin weight ratio. Firstly, we considered the
ResNet18- architecture [6] as our baseline model. And
secondly, we employed a convGRU-CNN [4] architecture (see
Figure 2) tailored to the spatio-temporal properties of the OCT
input data. A convolutional gated recurrent unit (convGRU)
processed the sequential A-scans iteratively and produced a
feature vector containing the temporal information of M;. We
replaced the dot products in the GRU cell with 1D
convolutions such that

zg = 0(Why *x heoy + Wy xx, + by),
1y = 0(Wpy * he_y + Wy x x, + b)),
h, = tanh(W,, * (r, © hy_y) + W, * x, + b) and

hh=(1-2)0Oh1+z,ORt
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Figure 2: The employed model architecture of the convGRU-CNN sequentially processes each A-scan iteratively to obtain a feature
vector. Subsequent spatial processing is conducted in four layers of two residual blocks and the sample is characterized via the

gelatin weight ratio.

followed for the update gate z,, the reset gate r;, the candidate
activation vector A, and the hidden state 4, respectively. W
denotes the trainable filters. The obtained feature vector from
the last update of the hidden state /4, was subsequently
processed with a 1D CNN architecture to extract the spatial
information. It was based on the basic residual building blocks
[6] with 1D convolutions.

2.4 Data Acquisition

Three phantoms were produced for six different elasticities
(10wt%, 12wt%, 14wt%, 16wt%, 18wt%, 20wt%). Every
phantom of each weight ratio was indented 15 times. The
confined compression loading was conducted with randomly
chosen loading rates for each indentation experiment between
0.1 mms'and 0.5 mm s™". The axial force measurements were
employed to maximize compression while preventing surface
rupture of the sample. OCT data was acquired during the
loading cycle and the OCT intensity data was reconstructed.
The indentation data was separated into sequences of 64
consecutively acquired A-scans representing a sampling
frequency of 86 Hz. The spatio-temporal images were labeled
with the corresponding gelatin weight ratio. The obtained data
set consisted of approximately 3x10° labeled images M;. We
split the data based on the phantoms in individual subsets for
training, validation and testing. The validation set was used for
the optimization of hyperparameters. The model performance
was evaluated based on the mean absolute error (MAE) in wt%
with standard deviation and the correlation coefficient
between predictions and labels. We further report the mean IT
in ms averaged over 300 forward passes.

Table 1: MAE, correlation coefficient (CC) and inference time (IT)
of the sample characterization for the considered model
architectures. The best results are marked in bold.

Model MAE [wt%] CC IT [ms]
ResNet18 216+132  0.8905 3.28+0.09
convGRU-CNN 1.21 +0.91 0.9237  34.44 £ 0.47

3 Results and Discussion

The results for both model architectures are listed in Table 1.
The proposed convGRU-CNN and the Resnetl8 model
resulted in a MAE of 1.21 £ 0.91 wt% and 2.16 + 1.32 wt%,
respectively. The convGRU-CNN also outperformed the
baseline model considering the correlation coefficient of
0.9237 and 0.8905, respectively. Both models could
successfully characterize different sample elasticities in
unseen recordings. The indentation loading rate was varied to
prevent the models from differentiating the samples based on
the change in the epoxy deformation alone. Instead, the models
were forced to evaluate the ratio between sample and sensor
deformation over the constant temporal sequence of A-scans.
The evaluated models were able to characterize the samples
and consequently detect the varying responses to the applied
mechanical load. The prediction for each input image was also
plotted separately for the different sample elasticities and both
model types in Figure 3. The results show that the baseline
model underestimated the elasticity for higher gelatin
concentrations. Large deviations of the median from the
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Figure 3: Left: Prediction for the baseline model plotted separately over the actual sample elasticity for each input image in the test set.

Right: Analogous plot for the convGRU-CNN architecture.

reference line could be observed and the larger standard
deviation of the error indicated a wider spread of the
predictions for each weight ratio. The predictions of the
convGRU-CNN model were more consistent over the
evaluated range and only the elasticity of the 12wt% gelatin
samples was notably underestimated. For both models, the
Kruskal-Wallis test (p < 0.0001) and the afterwards conducted
Conover’s post hoc test (p < 0.0001 for all comparisons)
showed that there was a significant difference between the
model predictions for each gelatin concentration. Regarding
the IT, the baseline model provided the faster forward pass
while the recurrent nature of the convGRU significantly
increased the IT for the convGRUCNN model. The lower IT
of the baseline model is therefore of interest for a real-time
sample characterization. However, the IT values are highly
hardware (GTX 1080Ti, NVIDIA Corporation, USA) and
software (PyTorch) dependent. Alternatively, the more
accurate convGRU-CNN model could be utilized with a
reduced sampling frequency.

4 Conclusion

We proposed a novel OCE needle probe that enabled
simultaneous load sensing and OCT imaging. We have
demonstrated the application of the needle in indentation
experiments on tissue mimicking phantoms. We have shown
the end-to-end sample characterization via deep learning
directly from the acquired OCT sequences. The samples could
be differentiated based on their elastic properties without the
need for intermediate calculations of local displacement fields
and subsequent strain estimations. The insertion of the needle
into deeper sample layers may be realized with an additional

guide needle where the probe could enable tissue

characterization. This work consequently serves as the
foundation towards a deep learning-based quantitative
compression-based OCE during biopsies or MIS.
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