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Abstract: The distinction between malignant and benign 

tumors is essential to the treatment of cancer. The tissue's 

elasticity can be used as an indicator for the required tissue 

characterization. Optical coherence elastography (OCE) 

probes have been proposed for needle insertions but have so 

far lacked the necessary load sensing capabilities. 

We present a novel OCE needle probe that provides 

simultaneous optical coherence tomography (OCT) imaging 

and load sensing at the needle tip. We demonstrate the 

application of the needle probe in indentation experiments on 

gelatin phantoms with varying gelatin concentrations. We 

further implement two deep learning methods for the end-to-

end sample characterization from the acquired OCT data. 

We report the estimation of gelatin sample weight ratios [wt%] 

in unseen samples with a mean error of 1.21 ± 0.91 wt%. Both 

evaluated deep learning models successfully provide sample 

characterization with different advantages regarding the 

accuracy and inference time. 
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1 Introduction 

The response to mechanical stress significantly varies for 

different tissue types and cancerous tissues exhibit different 

elasticities compared to their healthy counterpart [5]. Tissue 

elasticity can therefore serve as a biomarker for tissue 

characterization. Clinicians can feel for stiff inclusions 

associated with pathology but manual palpation is subjective 

and feedback on local forces is difficult to acquire in modern 

minimally invasive surgery (MIS). Instead, image-based 

elastography has been proposed for the measurement of 

elasticity in biological tissue by mapping local deformations 

to an applied mechanical load. Ultrasound elastography [3] 

and magnetic resonance elastography [11] have been 

implemented for tissue characterization at a resolution of 

hundreds of micrometers. In recent years, Optical coherence 

elastography (OCE) has gained attention as an extension to 

optical coherence tomography (OCT). OCT can help in the 

detection of micrometer structures due to its high spatial 

resolution of 1 µm to 10 µm [7]. OCE is commonly limited to 

the application to superficial target regions due to the 

maximum imaging depth of approximately 2 mm. But OCE 

can be integrated in a needle probe to extend the application to 

deeper target regions. Needle-based OCE has been proposed 

with shear wave [9] and compression loading [8]. 

Compression-based OCE offers higher lateral resolution but 

the lack of local load sensing within the previously proposed 

needle-probe only provides qualitative elasticity 

measurements. Friction forces along the needle shaft are 

superimposed with the local tip forces and a dedicated force 

sensor located at the needle tip is required. Tissue 

characterization is only realizable with a known relation to the 

applied load. So far, sensors for the measurement of needle tip 

forces [1] as well as needle-based OCT probes for guided 

interventions [2] have been proposed exclusively. 

In this work, we present a novel compression-based OCE 

needle-probe with simultaneous load sensing and imaging 

capabilities. We further propose the direct tissue 

characterization for compression-based OCE via deep learning 

and demonstrate our methods on tissue mimicking gelatin gels. 

A similar approach has recently shown success in shear wave 

OCE [10]. The end-to-end characterization removes the need 

for intermediate calculations of local displacement fields that 

are otherwise needed for compression-based OCE. 
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2 Materials and Methods 

2.1 System Setup and OCT Data 

Our custom built needle probe was designed as illustrated in 

Figure 1. A single-mode glass fiber (SMF-28, Thorlabs 

GmbH, GER) was embedded into a hollow needle and fixed 

via a ferrule. A flat tip needle was used for the compression of 

the sample and the distal end was fitted with a cylindrical 

sensor. The sensor was cast out of a translucent epoxy resin 

(NOA 63 and 1625, Norland Products Inc., USA). The end of 

the optical fiber was angled at 8° to minimize common-path 

reflections and provided a forward facing view that visualized 

both the sensor and the sample. The needle probe was used for 

the indentation of gelatin gels with simultaneous OCT imaging 

under load. Axial scans (A-scans) were acquired at a sampling 

rate of 5.5 kHz via the spectral domain OCT imaging system 

(Telesto Telesto I, Thorlabs GmbH, GER). The flexible sensor 

deformed upon indentation of the sample and the resulting 

movement is proportional to the locally occurring load. A high 

precision, linear translation stage (ZFS25B, Thorlabs GmbH, 

GER) and a uniaxial force sensor (KD24s, ME-Meßsysteme 

GmbH, GER) were used for the indentation of tissue 

mimicking gelatin gels. Different weight ratios between 

gelatin and water were used to produce the phantoms. The 

weight ratio was used as a surrogate label for the elasticity and 

the two terms are used interchangeably in the context of this 

work. 

2.2 Deep Learning Problem 

We considered the end-to-end learning problem from 

sequentially acquired 1D A-scans to the direct sample 

characterization utilizing the varying resistance to deformation 

for each sample elasticity. An image Mi ∈ Rnxm assembled from 

a temporal sequence n of consecutive A-scans Ai ∈ Rm was 

directly mapped to the gelatin weight ratio of the imaged 

sample under load. It was considered as a continuous variable 

and the sample characterization was consequently handled as 

a regression problem. 

2.3 Network Architectures 

We compared two network architectures for the mapping of Mi 

to the gelatin weight ratio. Firstly, we considered the 

ResNet18- architecture [6] as our baseline model. And 

secondly, we employed a convGRU-CNN [4] architecture (see 

Figure 2) tailored to the spatio-temporal properties of the OCT 

input data. A convolutional gated recurrent unit (convGRU) 

processed the sequential A-scans iteratively and produced a 

feature vector containing the temporal information of Mi. We 

replaced the dot products in the GRU cell with 1D 

convolutions such that 
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Figure 1: Left: Experimental setup with a schematic of the proposed needle probe. A force sensor and motion stage were used for the 

indentation of the gelatin samples. The depth scan of the OCT system (blue line) visualized deformations of the epoxy sensor 

(green) and the sample beyond. Right: Example recorded during the indentation of a single phantom. The deformation of the 

sensor (interfaces marked by black and white arrow) provides information on the local tip load while the sample is simultaneously 

imaged under deformation. 
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followed for the update gate zt, the reset gate rt, the candidate 

activation vector ℎ� t and the hidden state ht, respectively. W 

denotes the trainable filters. The obtained feature vector from 

the last update of the hidden state hn was subsequently 

processed with a 1D CNN architecture to extract the spatial 

information. It was based on the basic residual building blocks 

[6] with 1D convolutions. 

2.4 Data Acquisition 

Three phantoms were produced for six different elasticities 

(10wt%, 12wt%, 14wt%, 16wt%, 18wt%, 20wt%). Every 

phantom of each weight ratio was indented 15 times. The 

confined compression loading was conducted with randomly 

chosen loading rates for each indentation experiment between 

0.1 mm s−1 and 0.5 mm s−1. The axial force measurements were 

employed to maximize compression while preventing surface 

rupture of the sample. OCT data was acquired during the 

loading cycle and the OCT intensity data was reconstructed. 

The indentation data was separated into sequences of 64 

consecutively acquired A-scans representing a sampling 

frequency of 86 Hz. The spatio-temporal images were labeled 

with the corresponding gelatin weight ratio. The obtained data 

set consisted of approximately 3×106 labeled images Mi. We 

split the data based on the phantoms in individual subsets for 

training, validation and testing. The validation set was used for 

the optimization of hyperparameters. The model performance 

was evaluated based on the mean absolute error (MAE) in wt% 

with standard deviation and the correlation coefficient 

between predictions and labels. We further report the mean IT 

in ms averaged over 300 forward passes. 

 

Table 1: MAE, correlation coefficient (CC) and inference time (IT) 

of the sample characterization for the considered model 

architectures. The best results are marked in bold. 

Model MAE [wt%] CC IT [ms] 

ResNet18 2.16 ± 1.32 0.8905 3.28 ± 0.09  

convGRU-CNN 1.21 ± 0.91 0.9237 34.44 ± 0.47 

3 Results and Discussion 

The results for both model architectures are listed in Table 1. 

The proposed convGRU-CNN and the Resnet18 model 

resulted in a MAE of 1.21 ± 0.91 wt% and 2.16 ± 1.32 wt%, 

respectively. The convGRU-CNN also outperformed the 

baseline model considering the correlation coefficient of 

0.9237 and 0.8905, respectively. Both models could 

successfully characterize different sample elasticities in 

unseen recordings. The indentation loading rate was varied to 

prevent the models from differentiating the samples based on 

the change in the epoxy deformation alone. Instead, the models 

were forced to evaluate the ratio between sample and sensor 

deformation over the constant temporal sequence of A-scans. 

The evaluated models were able to characterize the samples 

and consequently detect the varying responses to the applied 

mechanical load. The prediction for each input image was also 

plotted separately for the different sample elasticities and both 

model types in Figure 3. The results show that the baseline 

model underestimated the elasticity for higher gelatin 

concentrations. Large deviations of the median from the 

Figure 2: The employed model architecture of the convGRU-CNN sequentially processes each A-scan iteratively to obtain a feature 

vector. Subsequent spatial processing is conducted in four layers of two residual blocks and the sample is characterized via the 

gelatin weight ratio. 
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reference line could be observed and the larger standard 

deviation of the error indicated a wider spread of the 

predictions for each weight ratio. The predictions of the 

convGRU-CNN model were more consistent over the 

evaluated range and only the elasticity of the 12wt% gelatin 

samples was notably underestimated. For both models, the 

Kruskal-Wallis test (p < 0.0001) and the afterwards conducted 

Conover’s post hoc test (p < 0.0001 for all comparisons) 

showed that there was a significant difference between the 

model predictions for each gelatin concentration. Regarding 

the IT, the baseline model provided the faster forward pass 

while the recurrent nature of the convGRU significantly 

increased the IT for the convGRUCNN model. The lower IT 

of the baseline model is therefore of interest for a real-time 

sample characterization. However, the IT values are highly 

hardware (GTX 1080Ti, NVIDIA Corporation, USA) and 

software (PyTorch) dependent. Alternatively, the more 

accurate convGRU-CNN model could be utilized with a 

reduced sampling frequency. 

4 Conclusion 

We proposed a novel OCE needle probe that enabled 

simultaneous load sensing and OCT imaging. We have 

demonstrated the application of the needle in indentation 

experiments on tissue mimicking phantoms. We have shown 

the end-to-end sample characterization via deep learning 

directly from the acquired OCT sequences. The samples could 

be differentiated based on their elastic properties without the 

need for intermediate calculations of local displacement fields 

and subsequent strain estimations. The insertion of the needle 

into deeper sample layers may be realized with an additional 

guide needle where the probe could enable tissue 

characterization. This work consequently serves as the 

foundation towards a deep learning-based quantitative 

compression-based OCE during biopsies or MIS. 
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