
Hannes Oppermann *, Felix Wichum, Lorenz Esch, Jens Haueisen, Matthias Klemm

MagCPP: A C++ toolbox for Combining
Neurofeedback with Magstim transcranial
magnetic stimulators

Abstract: Transcranial magnetic stimulation (TMS) is an
established method to treat various neurological diseases, such
as depression, Alzheimer’s disease, and tinnitus. New
applications for TMS are closed loop neurofeedback (NF)
scenarios, which require software control of the TMS system,
instead of the currently used manual control. Hence, the
MagCPP (https://github.com/MagCPP) toolbox was
developed and is described in this work. The toolbox enables
the external control of Magstim TMS devices via a C++
interface. Comparing MagCPP to two other toolboxes in a
TMS application scenario with 40% power, we found that
MagCPP works faster and has lower variability in repeated
runs (MagCPP, Python, MATLAB [mean±std in seconds]:
1.19±0.00, 1.59±0.01, 1.44±0.02). An integration of MagCPP
in a real-time data processing platform MNE-CPP with an
optional GUI demonstrates its ability as part of a closed-loop
NF-scenario. With its performing advantages over other
toolboxes, MagCPP is a first step towards a complete closed
loop NF scenario and offers possibilities for novel study
designs.

Keywords: TMS, EEG, closed loop, BCI, Data acquisition,
Data processing, Medical software

https://doi.org/10.1515/cdbme-2020-3128

1 Introduction

Non-invasive transcranial brain stimulation (NTBS)
techniques, such as Transcranial Magnetic stimulation (TMS),
are already widely used tools to study the relationship between
cortical activity and behavior, to trace the timing at which
activity in a particular cortical region contributes to a given
task, and to map the functional connectivity between brain
regions [1, 2]. In conjunction with Electroencephalography
(EEG), TMS can be used to directly stimulate specific cortical
regions and, at the same time, measure the stimulation induced
changes of activity and connectivity [3, 4]. Accordingly, this
method can be used to identify abnormal connectivity due to
brain damage [5].
So far, most research studies utilize TMS in offline related
scenarios, with the data being analyzed after the actual
measurement session. Such offline studies have, for example,
demonstrated that TMS-feedback improves executive function
in autistic patients [6].
From a neuroscientific point of view, the potentials for real-
time processing of neuronal data are manifold. Such
approaches not only enable a faster and more intuitive insight
on instantaneous brain functions, but more importantly they
create the foundation for a wide range of neurofeedback (NF)
scenarios. Due to their high temporal resolution,
Magnetoencephalography (MEG) and EEG are ideal
candidates for processing brain activation in real-time.
Processing MEG/EEG data in real-time, introduces the
following, nontrivial challenges: the low Signal-to-Noise-
Ratio (SNR), the large amount of incoming data and the high
computational cost of complex analysis procedures. Despite
the challenges, MEG/EEG real-time processing can be
become of interest to the neuroscience community as it has the
potential for a fundamental change in neuroscientific work -
away from experiments with fixed paradigms in favor of
highly dynamic and adaptable paradigms depending on the
subject’s brain state. NF scenarios enable researchers to test
hypotheses about specific brain properties by monitoring this

*Corresponding author: Hannes Oppermann: Institute of
Biomedical Engineering and Informatics, Technische Universität
Ilmenau, Ilmenau, Germany, E-Mail:
hannes.oppermann@tu-ilmenau.de
Felix Wichum, Jens Haueisen, Matthias Klemm: Institute of
Biomedical Engineering and Informatics, Technische Universität
Ilmenau, Ilmenau, Germany
Lorenz Esch: Athinoula A. Martinos Center for Biomedical
Imaging, Massachusetts General Hospital, Charlestown, MA,
USA;
Institute of Biomedical Engineering and Informatics, Technische
Universität Ilmenau, Ilmenau, Germany;
Boston Children’s Hospital, Boston, MA, USA

DE GRUYTER Current Directions in Biomedical Engineering 2020;6(3): 20203128

 Open Access. © 2020 Hannes Oppermann et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 License.

https://github.com/MagCPP

property in real-time and adapting the experimental
interventions according to the state of this parameter.
TMS with concurrent EEG real-time processing methods offer
the opportunity to introduce real-time feedback to
neuroimaging studies. To our knowledge, there exist no major
contributions to include sophisticated real-time processing
steps, e.g., real-time source or connectivity estimation, in an
EEG/TMS measurement session. Theoretical concepts and
hypotheses have been proposed to integrate cortical
stimulation into a NF scenario or BCI system [7, 8]. Still, only
little work on directly embedding TMS into an advanced
closed loop pipeline has been proposed so far [9, 10].
The MNE-CPP framework aims at combining real-time data
processing with advanced processing steps, which normally
are performed after rather than during the measurement. These
processing steps include real-time data pre-processing, source
estimation and functional connectivity estimation. MNE-CPP
[11] is written in C++ in order to cope with the
computationally intensive processing steps. MNE Scan [12] is
a standalone application built with MNE-CPP, which can
merge multiple advanced processing steps together and
provide the results in real-time to subsequent processing or
visualization steps. The real-time results could be used to
guide TMS during the measurement, either manually or via a
robotic arm.
To the best of our knowledge, no open source interface is
currently available, which provides a C++ interface to
communicate with Magstim TMS devices. We propose
MagCPP as a C++ interface to be used in C++ based projects,
e.g., MNE Scan. In the following, we describe the MagCPP
interface implementation and compare its performance to
MagPy [13] and MAGIC [14], which are interfaces for TMS
devices based on Python and MATLAB, respectively.
Moreover, we present a first use case scenario based on a
closed-loop pipeline, implemented in MNE Scan. Finally, we
provide a short discussion and outlook of MagCPP.

2 MagCPP toolbox

2.1 Overview

MagCPP is a platform-independent (Windows, Linux,
MacOS) toolbox, written in C++ to control Magstim Rapid²
devices (The Magstim Company Ltd., Whitland, UK). It was
inspired by the Python toolbox MagPy and is released under
the GNU General Public License (v3). The toolbox is a
standalone and open source software and can be freely
downloaded from GitHub (https://github.com/MagCPP).

2.2 Requirements

MagCPP’s only external dependency is Qt
(https://www.qt.io). As MagCPP employs parallel processing
with several threads, a computer with a multi-core CPU should
be preferred. The computer needs to possess a serial port or a
USB-to-serial adapter to connect to the Magstim TMS device
using a serial cable or a QuickFire cable [13]. The latter allows
low latency triggering of TMS pulses.

2.3 Toolbox structure and usage

The toolbox is structured into three device classes and two
communication classes. By calling the appropriate device
constructor, an object is created, and the communication
threads are started. The SerialPortController class monitors
the serial port, receives and sends messages to the stimulator.
It serves as a connection piece between the software and the
device. Depending on the state, e.g. connected or armed,
messages are sent by the ConnectionRobot class at regular
intervals to maintain the current status and to avoid a
connection abort.
A complete run for TMS application is shown as sequence
diagram in Figure 1. It consists of initializing, connecting to
the device, setting the power, bypassing the safety switch to
trigger shots, arming, firing and disconnecting.
Time-sensitive triggering of the device poses a difficulty
considering that commands are regularly send to maintain the
current status.

Figure 1: Sequence diagram of a complete run with necessary
functions (1) – (6). Three columns with boxes (Rapid/Magstim
R/MS, SerialPortController SPC and ConnectionRobot CR)
symbolizing threads. The internal flow is in the center. Internal
methods are written in bolt. Grey forms are for communication
with Magstim device.

https://github.com/MagCPP
https://www.qt.io/

These could be overlaid with new commands and cause a
delay. For this reason, the ConnectionRobot can be paused for
a short time, to allow privileged handling of time-sensitive
commands.

2.4 Characterization

2.4.1 Measurement paradigm

A run with all necessary functions is called here a complete
run, which is shown in Figure 1. A wait time of one second
after the arm command is required to ensure that the device is
prepared to fire.
In the following, the software packages MagCPP, MAGIC and
MagPy are compared. Each measurement was repeated for 15
times. Examined were:
• the influence of an USB-to-serial adapter in comparison

to a regular serial port (investigated using MagPy),
• the adjustment of different power settings,
• the differences between quickFire and fire command.

The difference between the quickFire and the fire command
were examined only in MagCPP and MagPy, because there is
no quickFire function in MAGIC. To receive feedback about
successful function calling from the software, all functions
were set to generate a return value. Values with more than
three scaled median absolute deviations were removed as
outliers.

2.4.2 Hardware setup

First, the influence of an USB-to-serial adapter in comparison
to a regular serial port was investigated, using the MagPy
software package. No significant differences between a
regular serial port and a USB-to-serial adapter could be found,
which is shown in Table 1. As the computer with the regular
serial port was not available for further measurements, all
subsequent measurements were taken with a Microsoft
Surface Pro 4, Windows 10 Pro, Intel® Core™ i7-6650U, 16
GB RAM and an USB-to-serial adapter.

2.4.3 Results

Figure 2 shows the runtimes of the three examined toolboxes.
MagCPP is the fastest, while MagPy requires the longest
runtime. The largest variances of runtimes were measured at
20% TMS power with MagPy and MAGIC. The small
variance in runtimes for MagCPP is similar for all power
settings.

The results of the comparison of the quickFire and fire
command are depicted in Table 2. MagCPP performs also
faster than MagPy for all investigated TMS power levels. No
significant difference was found between the fire and the
quickFire command.

Power 20 % 40 % 80 %
 Mode qF f qF f qF f

MagCPP
1.20 1.19 1.21 1.19 1.20 1.19

 0.00 0.01 0.01 0.00 0.00 0.00

MagPy

1.55 1.59 1.55 1.59 1.55 1.53
 0.02 0.03 0.02 0.01 0.03 0.01

3 Closed loop Neurofeedback
scenario

3.1 Integration into MNE-CPP

An alternative to the standalone version of MagCPP is an
integrated version of MagCPP in MNE Scan. This integration
is also available on GitHub (MagCPP/mne-cpp). Combined
with data acquisition and signal processing plugins, provided

 Mean (s) Std (s)

Serial Port 1.443 0.018

USB-to-serial adapter 1.447 0.014

Table 2: Runtime comparison of QuickFire (qF) and fire (f)
command using MagCPP and MagPy at different power
settings (values are mean and standard deviation in italic)

Table 1: Comparison between the serial port and USB-to-serial
port adapter.

20 % 40 % 80 %
TMS Power Value

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Ti
m

e
in

 s
ec

on
ds

Complete run with adapter for different power settings
MagPy
MAGIC
MagCPP

Figure 2: Runtimes of complete runs with MagCPP (blue), MagPy
(red) and MAGIC (green) at different TMS power levels.

by MNE Scan, a closed loop NF-scenario can be established.
Our TmsNeurofeedback plugin allows to set the conditions
under which a TMS impulse is triggered. Additionally, the
possibility of visual feedback to the subject is given.

3.2 Graphical-user interface

The TmsNeurofeedback plugin also implements a graphical
user interface (GUI). It provides device dependent and
feedback settings. The user can choose between single pulse
and repetitive TMS (rTMS) mode. Furthermore, the user can
choose between static and dynamic power values. In case of
static power, the desired value must be selected. In dynamic
power mode, the TMS power is set in dependence of the input
signal. In the visual feedback settings, it is possible to change
the ranges for positive, neutral and negative feedback
depending on the input value. Furthermore, it is possible to set
the time delay between two feedback images.

4 Discussion

In this work, a new software package called MagCPP is
introduced, which implements an interface to Magstim Rapid²
devices in C++. We found significant performance differences
compared to MagPy (Python) and MAGIC (MATLAB) and
show that MagCPP is suitable for an application in NF
scenarios. The presented measurements and comparisons to
other software packages were all carried out on Windows with
Rapid2 devices. We do not expect fundamentally different
results on other platforms. The comparison of the different
software packages was based on code runtimes, which were
measured using appropriate functions provided by each
programming language. As each programming language
implements its own method to measure to runtime of a certain
piece of code, our results may also reflect this influence. The
overhead introduced by those runtime measurement functions
is usually much smaller than the differences found between the
software packages, which are in the order of a few hundred
milliseconds. It remains to be characterized how long it takes
for a command to be sent to the device via the QuickFire cable
and to be processed there (e.g. to fire the stimulator).
The ability to set the TMS power depending on the state of the
brain offers a new possibilities study design. The implemented
toolbox was not yet tested in human subjects.

5 Conclusion
A new open source software MagCPP to control Magstim
Rapid² TMS devices was established. Its usage for real-time
processing is feasible and has been tested with a quickFire
cable under Windows. In contrast to the MagPy and the
MAGIC toolboxes, the presented MagCPP toolbox can be
integrated into MNE-CPP and an optional GUI is available.
The presented use case is a big step towards a complete closed
loop NF scenario. It offers possibilities for adaptive stimulus
intensities and novel study designs.

Author Statement
Research funding: DFG Ha2899/26-1 and Free State of Thuringia
2019 FGR 0083. Conflict of interest: Authors state no conflict of
interest.

References
[1] Pascual-Leone, A. Transcranial magnetic stimulation in cognitive
neuroscience – virtual lesion, chronometry, and functional connectivity.
Curr Opin Neurobiol 2000;2(10):232–237.
[2] Kunze T, Hunold A, Haueisen J, Jirsa V, Spiegler A. Transcranial
direct current stimulation changes resting state functional connectivity.
A large-scale brain network modeling study. NeuroImage
2016;140:174–187.
[3] Ilmoniemi RJ, Virtanen J, Ruohonen J, Karhu, J, Aronen HJ,
Näätänen R, et al. Neuronal responses to magnetic stimulation reveal
cortical reactivity and connectivity. Neuroreport 1997;8(16):3537–3540.
[4] Zrenner C, Belardinelli P, Müller-Dahlhaus F, Ziemann U. Closed-
Loop Neuroscience and Non-Invasive Brain Stimulation. A Tale of Two
Loops. Front Cell Neurosci 2016;10:92.
[5] Borich, MR, Wheaton LA, Brodie SM, Lakhani B, Boyd LA.
Evaluating interhemispheric cortical responses to transcranial magnetic
stimulation in chronic stroke. A TMS-EEG investigation. Neurosci Lett
2016;618:25–30.
[6] Sokhadze, E.M. et al., 2014. Neuromodulation integrating rTMS
and neurofeedback for the treatment of autism spectrum disorder: An
exploratory study. Applied Psychophysiology and Biofeedback, 39(3–
4), pp.237–257.
[7] Bergmann TO, Karabanov A, Hartwigsen G, Thielscher A, Siebner
HR. Combining non-invasive transcranial brain stimulation with
neuroimaging and electrophysiology. Current approaches and future
perspectives. NeuroImage 2016;140:4–19.
[8] Sergeeva EG, Henrich-Noack P, Bola M, Sabel BA. Brain-state-
dependent non-invasive brain stimulation and functional priming. A
hypothesis. Front hum neurosci 2014;8:899.
[9] Gharabaghi A, Kraus D, Leão MT, Spüler M, Walter A, Bogdan M
et al. Coupling brain-machine interfaces with cortical stimulation for
brain-state dependent stimulation. Enhancing motor cortex excitability
for neurorehabilitation. Front hum neurosci 2014;8:122.
[10] Walter A, Ramos MA, Spüler M, Naros G, Leão MT, Gharabaghi A
et al. Coupling BCI and cortical stimulation for brain-state-dependent
stimulation. Methods for spectral estimation in the presence of
stimulation after-effects. Front neural circuit 2012;6:87.
[11] Esch L, Dinh C, Larson E, Engemann D, Jas M, Khan S, et al. MNE:
Software for Acquiring, Processing,and Visualizing MEG/EEG Data. In:
Supek S, Aine C, editors. Magnetoencephalography. Cham: Springer
2019:355-371.
[12] Esch L, Sun L, Klüber V, Lew S, Baumgarten D, Grant PE et al.
MNE Scan. Software for real-time processing of electrophysiological
data. J Neurosci Methods 2018;303:55–67.
[13] McNair NA. MagPy: A Python toolbox for controlling Magstim
transcranial magnetic stimulators. J Neurosci Methods 2017;276:33–
37.
[14] Habibollahi SF, Rogasch NC, McNair NA, Biabani M, Pillen SD,
Marshall TR et al. MAGIC. An open-source MATLAB toolbox for
external control of transcranial magnetic stimulation devices. Brain
stimul 2018;11(5):1189–1191.

