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Abstract: The morphology of the electrocardiogram (ECG)
varies among different healthy subjects due to anatomical and
structural reasons, such as for example the shape of the heart
geometry or the position and size of surrounding organs in
the torso. Knowledge about these ECG morphology changes
could be used to parameterize electrophysiological simula-
tions of the human heart.
In this work, we detected the boundaries of ECG waveforms,
i.e. the P-wave, the QRS-complex and the T-wave, in 12-
lead ECGs from 918 healthy subjects in the Physionet Com-
puting in Cardiology Challenge 2020 Database with the IBT
openECG toolbox. Subsequently, we obtained the onset, the
peak and the offset of each P-wave, QRS-complex and T-wave
in the signal. In this way, the duration of the P-wave, the QRS-
complex and the T-wave, the PQ-, RR- and the QT-interval
as well as the amplitudes of the P-wave, the Q-, R- and S-
peak and the T-wave in each lead were extracted from the 918
healthy ECGs. Their statistical distributions and correlation
between each other were assessed.
The highest variabilities among the 918 healthy subject were
found for the RR interval and the amplitudes of the QRS-
complex. The highest correlation was observed for feature
pairs that represent the same feature in different leads. Es-
pecially the R-peak amplitudes showed a strong correlation
across different leads.
The calculated feature distributions can be used to optimize
the parameters of populations of cardiac electrophysiological
models. In this way, realistic in-silico generated surface ECGs
can be simulated in large scale and could be used as input data
for machine learning algorithms for a classification of cardio-
vascular diseases.

Keywords: ECG variabilities, ECG features, Electrophysio-
logical Model Parameterization

1 Introduction

In-silico generated ECGs based on an electrophysiological
model can be used to study and better understand the influence
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of physiological and pathological cardiac excitation propaga-
tion on the surface ECG. However, value ranges of different
cell and tissue parameters that are to be specified for the sim-
ulation, such as for example tissue conductivities, vary among
different literature reports [1]. Therefore, they need to be opti-
mized in the simulations so that the in-silico generated surface
ECGs match the statistics of clinical ECG characteristics in the
best possible way to ensure that simulated ECG signals remain
as realistic as possible.

Previous studies quantified the distribution of selected
ECG features, such as amplitudes and durations of single ECG
waveforms [2]. However, the ECG statistics reported in litera-
ture mainly contain analyses on selected and lead independent
ECG features and no complete statistics of lead-specific am-
plitude and timing features based on the same database exists
to the best of our knowledge. Furthermore, no comprehensive
analysis on correlation coefficients among the extracted fea-
tures is published.

To cater the need for a full analysis of lead dependent tim-
ing and amplitude features, eleven timing and amplitude fea-
tures per lead are extracted for 918 healthy subjects from the
Physionet CinC Challenge 2020 Database [3], resulting in a to-
tal of 132 features per patient. A statistical distribution for all
extracted features was set up. Furthermore, the correlation co-
efficients between all features were calculated to evaluate how
different features are linked to each other which also has to be
considered when parameterizing electrophysiological simula-
tions.

2 Methods

2.1 ECG Waveform Boundary Detection

The IBT openECG toolbox was used to detect the waveform
boundaries in the 12-lead ECGs of all 918 healthy subjects.
The algorithm detected the timestamps of the on- and offset
of the P-wave (Pon, Poff), the QRS-complex (QRSon, QRSoff)
and the T-wave (Ton, Toff) as well as timestamps of the P-, R-,
and T-peak (Ppeak, Rpeak, Tpeak). The Q- and the S-peak (Qpeak,
Speak) were marked at the minimum signal value in the interval
[QRSon, Rpeak] and [Rpeak, QRSoff], respectively.

The delineation is exemplarily shown for 3 leads of the
signal A0002.
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Fig. 1: Example of detected boundaries in the signal sel0303lre.
P-wave, QRS-complex and T-wave markers are colored in red,
magenta and black, respectively. On- and offset of the waveforms
are marked with a dot, the peaks with a triangle.

2.2 Calculation of Statistical Feature
Distributions

Eleven features were calculated for each beat 𝑖 by means of the
detected ECG waveform boundaries and peaks for each lead as
follows:
∙ P-wave duration: 𝑃𝑑[𝑖] = 𝑃𝑜𝑓𝑓 [𝑖]− 𝑃𝑜𝑛[𝑖]

∙ QRS-complex duration: 𝑄𝑅𝑆𝑑[𝑖] = 𝑄𝑅𝑆𝑜𝑓𝑓 [𝑖] −
𝑄𝑅𝑆𝑜𝑛[𝑖]

∙ T-wave duration: 𝑇𝑑[𝑖] = 𝑇𝑜𝑓𝑓 [𝑖]− 𝑇𝑜𝑛[𝑖]

∙ PQ-intverval: 𝑃𝑄𝑑[𝑖] = 𝑄𝑅𝑆𝑜𝑛[𝑖]− 𝑃𝑜𝑛[𝑖]

∙ QT-intverval: 𝑄𝑇𝑑[𝑖] = 𝑇𝑜𝑓𝑓 [𝑖]−𝑄𝑅𝑆𝑜𝑛[𝑖]

∙ RR-intverval: 𝑅𝑅𝑑[𝑖] = 𝑅𝑝𝑒𝑎𝑘[𝑖+ 1]−𝑅𝑝𝑒𝑎𝑘[𝑖]

∙ P-amplitude: 𝑃𝑎[𝑖] = 𝐸𝐶𝐺(𝑃𝑝𝑒𝑎𝑘[𝑖])

∙ Q-amplitude: 𝑄𝑎[𝑖] = 𝐸𝐶𝐺(𝑄𝑝𝑒𝑎𝑘[𝑖])

∙ R-amplitude: 𝑅𝑎[𝑖] = 𝐸𝐶𝐺(𝑅𝑝𝑒𝑎𝑘[𝑖])

∙ S-amplitude: 𝑆𝑎[𝑖] = 𝐸𝐶𝐺(𝑆𝑝𝑒𝑎𝑘[𝑖])

∙ T-amplitude: 𝑇𝑎[𝑖] = 𝐸𝐶𝐺(𝑇𝑝𝑒𝑎𝑘[𝑖])

For each subject, the median value for each feature was cal-
culated over all beats detected in one recording to obtain a
representative feature set per subject as exemplarily shown for
the P-wave duration below:

𝑃𝑑 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑃𝑑[0], ..., 𝑃𝑑[𝑁 ])

with N denoting the number of beats. Taking the median ac-
counts for wrongly detected waveform boundaries or outliers
and ensures that the length of the ECG recording does not in-

fluence the calculation of the statistical distributions of inter-
patient ECG variations.

The histograms of the resulting 132 ECG features (11 fea-
tures × 12 leads) were calculated and the probability distribu-
tion for each feature was fitted once with a kernel and once
with a normal distribution. Subsequently, the probability den-
sity function (PDF) for each feature was generated.

Furthermore, the correlation coefficients between each
pair of features were computed.

3 Results

3.1 Feature Distributions

The mean and standard deviation of all feature values are listed
in Tab. 1.1 and Tab. 1.2.

The timing features in Tab. 1 show that the duration of dif-
ferent ECG segments slightly varies between different leads.
The P-wave is characterized by a relatively low dispersion of
16 ms [4], whereas the QRS-complex and the T-wave dura-
tion vary more markedly with a maximum discrepancy be-
tween their lead dependent mean values in Tab. 1 of 24ms and
40ms, respectively. The RR interval is independent of the spe-
cific lead and shows the same mean and standard deviation
across all leads up to a a precision of 10𝜇𝑠 (cf. Tab. 1).

The distributions of the amplitudes differ among the 12
leads. Especially the R- and S-peak amplitude show differ-
ences of >1mV in their mean values between different leads.
The amplitudes for lead aVR are negative (except for the R-
Peak by definition). Lead II, which represents the main axis of
the heart, showed the highest absolute mean values for all am-
plitude features among the Einthoven leads (cf. Tab. 2). The R-
progression /S-degression in the Wilson leads is shown in Tab.
2. The R-Peak amplitude increases from lead V1 to lead V4,
whereas the absolute value of the S-Peak amplitude decreases
from lead V2 to V6. The PDFs calculated with a kernel estima-
tion for the R- and S-peak amplitudes in the Wilson leads are
shown in Fig. 2. They all follow approximately a normal dis-
tribution with increasing and decreasing mean values between
V1 to V4 and V2 to V6, respectively.

3.2 Feature Correlations

All feature combination pairs with a correlation coefficient
above 0.85 are listed in Tab. 3. The highest correlation coef-
ficients are in all twelve cases obtained for pairs of the same
feature in different leads. Especially for the R-peak amplitude
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Tab. 1: Mean and standard deviation of all timing features in different leads.

ECG Feature Pd in ms PQd in ms QRSd in ms QTd in ms Td in ms RRd in ms

Lead I 135.53 (± 17.82) 152.22 (± 24.81) 100.41 (± 13.66) 379.62 (± 39.92) 155.36 (± 30.08) 812.14 (± 106.39)
Lead II 134.42 (± 14.31) 156.05 (± 23.52) 105.67 (± 15.83) 385.45 (± 40.83) 157.47 (± 31.88) 812.12 (± 106.39)
Lead III 142.89 (± 22.78) 178.43 (± 29.46) 99.12 (± 22.47) 409.92 (± 59.78) 191.21 (± 56.59) 812.21 (± 106.75)
Lead aVR 133.43 (± 12.67) 151.77 (± 21.56) 103.97 (± 13.27) 379.03 (± 32.67) 151.61 (± 21.81) 811.93 (± 106.47)
Lead aVL 148.71 (± 23.09) 177.03 (± 32.14) 96.08 (± 19.68) 387.18 (± 58.46) 175.81 (± 50.66) 812.15 (± 106.49)
Lead aVF 136.93 (± 17.73) 166.34 (± 27.19) 102.76 (± 19.85) 397.01 (± 53.34) 171.95 (± 47.39) 812.28 (± 106.47)
Lead V1 145.78 (± 28.23) 184.87 (± 25.60) 120.39 (± 17.99) 388.35 (± 56.07) 179.77 (± 50.05) 812.05 (± 106.12)
Lead V2 149.09 (± 26.69) 176.39 (± 28.93) 115.88 (± 13.69) 383.86 (± 55.20) 182.25 (± 46.44) 812.13 (± 106.38)
Lead V3 149.26 (± 25.72) 165.04 (± 28.60) 109.40 (± 14.47) 390.06 (± 51.93) 175.75 (± 44.94) 812.21 (± 106.50)
Lead V4 145.63 (± 23.41) 161.11 (± 29.96) 103.21 (± 13.14) 388.56 (± 44.96) 163.52 (± 37.59) 812.17 (± 106.48)
Lead V5 143.60 (± 21.15) 161.32 (± 27.55) 100.56 (± 12.19) 384.76 (± 41.78) 158.17 (± 32.89) 812.10 (± 106.41)
Lead V6 142.23 (± 19.20) 160.91 (± 26.16) 101.95 (± 12.81) 383.41 (± 41.52) 156.47 (± 31.85) 812.17 (± 106.38)

Tab. 2: Mean and standard deviation of all amplitude features in different leads.

ECG Feature Pa in 𝜇V Qa in 𝜇V Ra in 𝜇V Sa in 𝜇V Ta in 𝜇V

Lead I 57.84 (± 40.96) -46.24 (± 41.82) 561.98 (± 278.40) -98.81 (± 94.05) 186.61 (± 93.16)
Lead II 79.59 (± 63.89) -64.58 (± 43.31) 808.22 (± 336.15) -129.72 (± 124.81) 209.99 (± 103.74)
Lead III 34.67 (± 67.42) -86.47 (± 135.08) 426.10 (± 328.25) -141.03 (± 218.73) 29.44 (± 94.77)
Lead aVR -64.43 (± 43.91) -387.17 (± 341.10) 109.86 (± 78.53) -246.27 (± 400.48) -200.49 (± 83.24)
Lead aVL 19.13 (± 49.43) -43.09 (± 75.48) 284.50 (± 251.76) -136.85 (± 164.22) 81.03 (± 79.17)
Lead aVF 56.37 (± 62.30) -53.80 (± 55.52) 575.84 (± 342.59) -120.35 (± 137.87) 117.41 (± 87.88)
Lead V1 13.67 (± 99.82) -72.81 (± 261.53) 229.23 (± 178.70) -757.58 (± 439.68) -7.92 (± 152.03)
Lead V2 112.43 (± 264.43) -38.71 (± 305.62) 640.32 (± 372.50) -1083.27 (± 564.17) 365.82 (± 285.77)
Lead V3 114.67 (± 282.59) -15.65 (± 176.30) 998.17 (± 529.93) -752.48 (± 448.13) 390.28 (± 265.82)
Lead V4 34.55 (± 169.56) -45.05 (± 63.71) 1389.98 (± 576.85) -476.21 (± 328.45) 386.56 (± 225.91)
Lead V5 13.34 (± 65.93) -59.21 (± 53.68) 1324.48 (± 467.76) -283.99 (± 234.78) 329.26 (± 176.52)
Lead V6 19.43 (± 63.52) -61.90 (± 49.78) 1089.41 (± 365.06) -151.85 (± 143.66) 264.89 (± 136.95)

Fig. 2: Probability density functions of the R-peak and S-peak
amplitudes in the Wilson leads V1-V6 calculated with a kernel
estimation. The distributions for different leads are color-coded.

Tab. 3: Feature pairs with a correlation coefficient above 0.85.

ECG Feature 1 ECG Feature 2 correlation coefficient

Ra Lead III Ra Lead aVF is 0.9302
Ra Lead II Ra Lead aVF is 0.9215
Ra Lead V4 Ra Lead V6 is 0.8808
Ta Lead II Ta Lead aVF is 0.8752
Sa Lead V3 Sa Lead V4 is 0.8645
Sa Lead V4 Sa Lead V5 is 0.8620
Ra Lead I Ra Lead aVL is 0.8620

and the S-peak amplitude, a strong correlation prevails for the
same feature in different leads.

The highest absolute correlation coefficient for a feature
pair representing different features in the same lead is the Q-
Peak and the S-Peak amplitude in lead aVR with a correlation
coefficient of -0.8304. The highest correlation between differ-
ent features in different leads was found for the R-Peak ampli-
tude in lead aVR and the S-peak amplitude in lead II (-0.8161).
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Fig. 3: Probability density functions of the P-wave amplitudes
calculated with a kernel estimation. The distributions for different
leads are color-coded.

4 Discussion

In this work, interpatient ECG variabilities were quantified in
all twelve standard leads and statistics including the mean and
the standard deviation of all feature values across different
leads are provided. In contrast to previous studies, the ECG
feature values were assessed specifically for each lead. By
comparing the findings available in previous works with the
respective mean values in this study, it gets apparent that espe-
cially the values for the QRS duration, the RR- and QT inter-
val coincide in our and previous studies. However, the mean
values we found for the P-wave duration are approximately
15-20 ms higher compared to those published in literature [2].
The reason for this can be traced back to different definitions
based on which the P-wave boundaries get detected.

Also the calculation of the PDFs highly depend on cor-
rectly detected ECG boundaries. Even though using the me-
dian value among approximately 30 beats per patient for each
feature minimizes the effect of incorrect detected fiducial
points in the ECG, it cannot be guaranteed that all ECG bound-
aries are accurately identified throughout the whole signal.

Even though the assumption of normally distributed fea-
tures holds for most of the features, it is violated especially for
the P-wave amplitude in lead V1 where the P-wave is known to
be biphasic. For this reason, the PDF of the ECG features are
not only calculated with a normal but also with a kernel distri-
bution that is shown in Fig. 3. It can be seen that the curve for
lead V1 (dark green) is characterized by two peaks with one
at a positive and one at a negative value. Therefore, it would
be beneficial to first classify different morphologies and sub-
sequently set up individual statistics for each of them.

The high correlation coefficients in Tab. 3 involving the
features from a Goldberger and from an Einthoven lead traces
back to the fact that aVR, aVL and aVF can be calculated with
a linear combination of the signals from lead I, II and III and
are therefore dependent on each other. The negative correlation
coefficients involving amplitude features from the aVR lead is
due to the predominantly negative signal in this lead [5].

5 Conclusion

With this work, we provide the mean and the standard devia-
tion of 132 ECG features. Since most of the features are nor-
mally distributed along the cohort, the simulation parameters
need to be set in such a way that the simulated population also
reflects normal feature distributions. The highest correlation
coefficients were found for the same ECG features in different
leads meaning that when parameterizing electrophysiological
simulations, the correlation of different features in different
leads do not necessarily have to be considered.

With the knowledge of the feature values’ variation within
the healthy population, the findings of this study can not only
be used for parameterizing electrophysiological simulations
but also for diagnosing cardiovascular diseases by comparing
the feature values of the healthy reference population with
potentially diseased ones.
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