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Abstract: Artificial intelligence and neural networks are get-
ting more and more relevant for several types of application.
The field of prosthesis technology currently uses electromyog-
raphy for controllable prosthesis. The precision of the control
suffers from the use of EMG. More precise and more collected
data with the help of EIT allows a much more precise analysis
and control of the prosthesis. In this paper a neural network
for gesture detection using EIT is developed and presented in
a user-friendly way.
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1 Introduction

In today’s world, the terms artificial intelligence (AI) and neu-
ral networks (NN) have been evaluated in almost every ap-
plication. The detection of gestures, performed by hand, is an
application that provides a very good basis for Al. Electrical
impedance tomography (EIT), which is also used in this paper,
promises to be a very suitable tool for this purpose.

Detection of muscular activity for gesture recognition helps to
monitor and control hand prosthesis. If a person loses a hand
due to an accident, a controllable prosthesis can provide new
quality of life. In this case, using Al approaches, the measured
EIT data on the forearm can provide information about which
gesture the person concerned is about to make.

The remainder of this paper is structured as follows: Section
2 gives the technical groundwork about Al and EIT. Section
3 describes the process of acquiring data and model selection.
The two last sections 4 and 5 highlight the outcome of our
research and give an overview about further work.
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2 Knowledge About Al And EIT

The two fields of research substantial for this implementation
are Artificial Neural Networks, as a subdomain of Artificial
Intelligence, and the Electrical Impedance Tomography as a
medical imaging technique.

EIT is generally used to reconstruct cross-section images of
encircled tissue, where different types of tissues exhibit char-
acteristic complex resistances (impedance). By placing several
electrodes directly on to the patient’s skin and feeding one pair
of electrodes after another with a constant supply current, it is
possible to measure the voltage between the remaining pairs
and thus calculate the corresponding biological impedances. In
order to obtain a complete image of the enclosed tissues, this
measurement pattern continues cyclically. In the most com-
mon feeding pattern, adjacent electrodes are used for power
input and measurements [1]. One cycle of individual measure-
ments represents one frame, which leads to a direct restriction
in the resolution of the resulting frame by the number of elec-
trodes used.

Although an exact definition of Artificial Intelligence has yet
to be made, technologies generally can be classified as such if
they show two characteristics: Fundamental similarity to hu-
man thinking or acting and independent problem solving [2].
That NN’s represent both of these aspects is evident. NN are
the direct and simplified mathematical abstraction of biolog-
ical neural networks and generally used for complex classifi-
cation problems. Although their applications are rapidly ex-
panding to many more fields than just classification, this tech-
nique is still relevant, especially in combination with medical
imaging. An artificial NN consists of many individual neurons
which are connected layer by layer. Given a specified input,
these neurons calculate an output based on this input and send
a corresponding signal to the connected neurons of the next
layer. By tweaking the weights of these connections in cer-
tain directions, the artificial NN can be optimized for a given
problem. This optimization can lead to a generalization for a
broader spectrum of inputs. Therefore, a data set needs to exist,
where for every given input the correct corresponding output is
known to train the artificial NN. The combination of artificial
NN and EIT is relatively common for image reconstruction,
while the approach of classifying raw data is fairly new [5, 6].
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3 Development Of Application
Based Al

The fundamental assumption, on which this paper is based,
has it’s origin in the different biological impedances measured
when distinct muscle groups are contracted. These differences
result not only from the physiological changes during muscle
contraction, but also from the different diameters of a muscle
when contracting. If these measurements are characteristic, the
retroactive detection of contracted muscle groups through an
artificial NN is to be expected. By placing the EIT-System at
an optimal reference point on the forearm, specified gestures,
which use muscles with insertion points proximal of the EIT-
System, are detectable.

The mobile EIT-System used in this paper contains 16 equidi-
stand electrodes on a rubberband with 23cm circumference.
With the adjacent pattern, this results in 208 linear indepen-
dent measurements per frame [3].

3.1 Requirements

The requirements of an implementation with the specified goal
can be separated in certain groups. The first group of require-
ments is connected to the validity of the dataset which is
needed for training the artificial NN. In order obtain a constant
comparability for the measurements, a directive for the use of
the System must be implemented. This contains an anatomical
reference point for the alignment of the EIT-System, as well
as the number of consecutive measurements for each gesture
and the duration of one session of measuring per user. Another
group of requirements is related to the underlying goal of a
real-time gesture recognition, which constrict the possible us-
age of more electrodes for a higher resolution and the deepness
and therefore complexity of the implemented artificial NN.

3.2 Acquiring Data

The first step in developing a gesture recognition was to ac-
quire a large amount of training and test data while meeting all
conceptual requirements. The corpus ulnae as the extension
of the easily palpable olecranon was defined as the anatomical
reference point. One electrode was marked and continuously
used to align the System to that reference. In order to measure
the most influential changes, the system was placed one third
distally on the forearm, where the center of mass of many
relevant muscles is located.

The defined set of gestures is split into two groups, whereas the
specific gestures were chosen arbitrary. These two groups are

separated by the complexity of their gestures. The first group
contains basic gestures, which are characterized by simple
movements and large contracting musclegroups. The second
group is characterized by more complex gestures, which can
involve single finger extensions or are put together by multiple
basic gestures.

The default set-size, which represents the number of consec-
utive measurements for each gesture before proceeding to
the next one, was set to ten. The System was set to measure
one frame per second. These settings assure a high frequency
while still guaranteeing enough distinction between consecu-
tive measurements, so that different frames of one set comprise
different information although belonging to the same gesture.

With this defined using directive of the EIT-System, 9480
individual measurements have been taken with five different
users. For four of these users, one session of gestures was
measured, where each session contains about 600 to 840 mea-
surements. For a fifth user, six sessions where recorded, which
are used as the foundation for training the neural network.
The measurement conditions where not to be changed during
a session. Readjusting or taking off the EIT-System lead to
restarting the Session in order to assure direct comparability
within one session.

3.3 Model Selection

The acquired data was used to train multiple models of artifi-
cial neural networks. One frame at a time was classified, which
results in an input layer with 256 neurons, whereas for each cy-
cle three individual values are always set to zero. Because of
the image-like nature of the frames, next to multilayer percep-
trons, convolutional NN where used to test the classification
[4].

First, the data was validated for the usage of a neural network
via a reference model of a multilayer perceptron, where the
labels of the gestures where randomised. The comparison of
this result, in which the detection accuracy doesn’t rise sig-
nificantly above chance level, with a correctly trained model
assures suitable data and a basic proof of concept through a
trivial procedure.

Starting with one model each for a convolutional NN and a
multilayer perceptron, these models were further developed
and tweaked based on their accuracy on a split validation set of
measurements with a rate of 0.25. Because all models got such
a high accuracy on the split validation (above 99%), the evalu-
ation needed to be adjusted to a split session validation, where
the NN was evaluated on a session of measurements disjunct
from the training data. The optimal model was used for dif-
ferent tests and for evaluating methods to further increase the
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Fig. 1: Average accuracy per session over multiple runs. One run
was ended through early stopping, monitoring the validation error

accuracy. These tests included cross-user validation as well as
decreasing the amount of trainings data to evaluate effects on
the split session validation.

4 Results

The validation of the data turned out positively. A quite trivial
multilayer perceptron with two hidden layers, containing 128
neurons each, turned out as the optimal model for the given
problem. To each hidden layer, a dropout-rate of 0.5 was ap-
plied. More complex models, especially CNN’s, generally
performed worse on a disjunct validation session. The inferior
performance of more complex models can be attributed to the
low complexity of the input data. While convolutional NN are
build to base their classification on direct visual markers, like
edges or vertices, the raw input data simply does not withhold
such characteristics. Therefore, larger models occasionally
failed to generalize completely.

Figure 1 shows the average accuracy of the chosen model
on the complete set of gestures (12), where each session was
separately used as validation data. Since all validation sessions
were taken by the same user, the large differences in accuracy
between sessions are a clear indication that small changes in
the position of the system lead to major variations in the mea-
surements. Furthermore, detection rates of up to 48% clearly
indicate the basic possibility of such an implementation.

To investigate the effect of the number of training samples
on the validation accuracy, these tests where repeated with a
reduced training set. All sessions from different users where
cut from the training data, which additionally allows to study
the effect of cross-user training. This reductions resulted in a
training set with about 6000 samples.
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With these training conditions, all sessions which previously
generalized significantly above chance level, decreased by
4-5 percentage points in accuracy. In reverse conclusion, this
clearly indicates a possible increase in validation accuracy
through collecting more training samples.

Additionally, the chosen gestures where individually evaluated
after their average detection rate through error-matrices. Fig-
ure 2 shows the average accuracy of all gestures in descending
order. The adjusted accuracy only takes those sessions into
consideration, which showed significant signs of generaliza-
tion.
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Fig. 2: Average accuracy per gesture on split session validation

4.1 Adaptions

To further improve the accuracy of the NN on unseen data,
certain adaptions were made based on the previous test results.
The gesture accuracies indicate, that certain gestures interfere
with each other. Therefore, the set of gestures was reduced to
the six best performing movements, considering the adjusted
accuracy of each gesture.

The high accuracy of the first split validation tests indicate,
that calibrating the network to the current position of the sys-
tem would result in a vast increase in validation accuracy. This
calibration was simulated by separating a small amount of val-
idation data an adding these samples to the training data. With
these adaptions, the implementation showed usable detection
rates of up to 96% per session, as shown in Figure 3. Even
cross user sessions, painted in blue in figure 3, rose to imple-
mentable accuracies.
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4.2 GUI

We have developed a graphical user interface (GUI) for user-
friendly operation of our work (see figure 4). The user can
calibrate the EIT system initially each time it is worn with the
selected gesture set. During the calibration process, images of
the current gesture are displayed to the user so that the data
are as similar as possible to the pre-trained neural network.
Then the pre-trained neural network is adjusted with the cali-
brated data, so that a prediction about the current gesture can
be made.
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Fig. 4: GUI for realtime gesture recognition

5 Future Work

Our work has shown that gesture detection using Al and EIT
can be realized with very high detection rates. Therefore cali-
bration is very important for the rate. In the future, more data
should be collected and the calibration should be defined even
more precisely. Furthermore, the hardware has to be optimized
with regard to the number of electrodes, since more electrodes
should allow an even more precise classification via Al
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