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Abstract: Aortic root aneurysm is treated by replacing the
dilated root by a grafted prosthesis which mimics the native
root morphology of the individual patient. The challenge in
predicting the optimal prosthesis size rises from the highly
patient-specific geometry as well as the absence of the orig-
inal information on the healthy root. Therefore, the estimation
is only possible based on the available pathological data. In
this paper, we show that representation learning with Condi-
tional Variational Autoencoders is capable of turning the dis-
torted geometry of the aortic root into smoother shapes while
the information on the individual anatomy is preserved. We
evaluated this method using ultrasound images of the porcine
aortic root alongside their labels. The observed results show
highly realistic resemblance in shape and size to the ground
truth images. Furthermore, the similarity index has noticeably
improved compared to the pathological images. This provides
a promising technique in planning individual aortic root re-
placement.
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1 Introduction

Valve-sparing aortic root reconstruction surgery presents a
promising treatment option for patients suffering from aortic
root aneurysms [1]. During the surgery, the native aortic valve
is preserved for patients with near-normal cusps in order to
maintain smooth outflow and avoid anticoagulation [2]. The
size of the implanted prosthesis has a significant influence on
the blood flow in the aortic annulus as well as the long-term
stability of the aortic valve [3]. However, the estimation of the
optimal prosthesis size is still an intricate task. Patient prosthe-
sis mismatch could lead to further complications as the aortic
root shape and geometry is highly patient-specific [4]. Addi-
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tionally, the available data on the patient root is only in the
dilated state. Our aim is to assist the surgeons in the decision-
making process by developing a preoperative planning tool.
For this tool, we need an estimation of the healthy shape only
based on its dilated state.
Previous works based on classic Machine Learning were con-
ducted for personalized prosthesis size prediction. In the early
steps, geometrical features were extracted from the ultrasound
images as pairs of healthy and dilated features. These features
were thereafter used to train a machine-learning algorithm,
such as Support Vector Regression (SVR), to learn a mapping
between the dilated and healthy states. Then, the SVR-model
can be utilized to predict individual healthy features based on
dilated ones [6]. A recent study has introduced an alternative
solution for reconstructing the healthy state of the aortic root.
Instead of handcrafting features from the ultrasound images,
a new method, based on representation learning with neural
networks, has been developed to learn the features from the
input images at the hidden layers of the network. Variational
Autoencoders (VAE) provide the possibility to convert the in-
put into a compressed low-dimensional representation, also
known as the latent space. After having the latent space for
all images extracted, a translation vector is manually defined
between the two classes to map between the dilated and the
healthy images [5].
Variational Autoencoders have shown considerable perfor-
mance as generative models, however, with standard VAE, the
latent space is randomly sampled. This means that all latent
points lie in one distribution. Thus, there is no control over the
generated images. In this work, we propose an alternative ap-
proach for generating the healthy aortic root without direct in-
teraction with the latent space. By including a condition on the
image class to produce, it is possible to direct the autoencoder
to output new reasonable images with specific attributes. In
this paper, we present the concept of Conditional Veriational
Autoencoders (CVAE) for planning valve-sparing aortic root
reconstruction. Furthermore, we perform a proof-of-concept
study and compare our method to previously published meth-
ods.
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Fig. 1: Schematic illustration of the proposed architecture.

2 Material and Methods

2.1 Dataset

In this study, a dataset of 48 2D ultrasound images (greyscale,
100×100) of porcine valves has been used [6]. In this study, we
only used the 2D images showing the commissure plane of the
root. The dataset contains the healthy and dilated states of 24
aortic roots in their native, healthy state as well as a manually
simulated pathological one so that the ground truth is known.

2.2 Model Architecture

In this experiment, the Conditional Variational Autoencoder
(CVAE) has a similar architecture of traditional VAE. The en-
coder consists of five convolutional layers (kernel size 3 × 3)
followed by average pooling (kernel size 2×2). The decoder is
obtained by mirroring the architecture of the encoder. Further-
more, a new layer that represents the condition using one-hot
encoding is imposed on the encoder and decoder inputs [7].
Figure 1 illustrates the architecture of the proposed model.

We used ReLU activation troughout the network except
the last layer, where we applied Sigmoid activation. The size
of the latent space is 16. This experiment is carried out us-
ing Neural Networks built with the help of Keras library with
Tensorflow backend.

2.3 Model Training

The objective of training the VAE is to maximize the varia-
tional lower bound [8]. By introducing the condition c, the la-
tent variable is now distributed under 𝑃 (𝑧|𝑐). This means that
for each condition c, we obtain a distinct distribution 𝑃 (𝑧) [7].
So, the loss function can be written as follows:

ℒ = E[log𝑃 (𝑋|𝑧, 𝑐)] − 𝐷𝐾𝐿[𝑄(𝑧|𝑋, 𝑐)||𝑃 (𝑧|𝑐)] (1)

Adam optimizer is chosen as an optimization algorithm. Due
to the limited number of data points, we applied the following
data augmentation techniques: rotation (max. ±10), translation
(0.1 height and width shift), zoom (0.1), and horizontal flip.

After training the model for 200 epochs, the model was
used in two separate stages. We first used the model to re-
construct the encoded representation of the healthy aortic root
images to evaluate the representational capability of the ar-
chitecture for the given problem. The recovered images were
then compared to the original input. In the second stage, we
utilized the model for producing the healthy geometry of the
aortic root based on the pathological root images. The dilated
root images were passed to the encoder to compute their latent
spaces. Then, the manipulation is done by forcing the decoder
to reconstruct the desired geometry by switching the condition
on the decoder to healthy. Thereby, the latent space is now re-
constructed in the healthy root distribution.

2.4 Evaluation Methodology

To test the reliability of the model when encountering new un-
seen images, we applied 6-Fold cross-validation over the 24
valves, i.e. the pairs of healthy and dilated images.

The similarity between the generated images and the orig-
inal input is measured with Mean Squared Error (MSE) and
Structural Similarity Index (SSIM). However, using these met-
rics requires performing image registration as the generated
and ground truth (healthy) images are not necessarily aligned.
As we only care for the shape reconstruction and not the ro-
tation of the shape, we performed intensity-based rigid image
registration before comparing the images.

Furthermore, we evaluated other architectures that have
different network depth. We also compared the model accu-
racy in dependency of the latent space dimensionality.

3 Results and Discussion

To evaluate the performance of our model, the experiments are
conducted as follows. First, we examined the learning process
of the CVAE to represent certain input in a lower-dimensional
space so that the model is able to reconstruct the output from
the reduced representation. Then, we generated aortic root im-
ages based on the described method. Afterwards, we checked
the effect of changing the depth as well as the latent space size
on the accuracy of the results. Finally, the results of this study
were compared with those from other approaches.
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Tab. 1: Similarity results between the reconstructed and input
images based on MSE and SSIM metrics.

MSE SSIM

Training set 249 ± 14 0.881 ± 0.002
Test set 475 ± 231 0.83 ± 0.02

3.1 Representation Learning

Table 1 lists the similarity results between the healthy aortic
root images propagated through the network and their recov-
ered output. The given results are the average values over each
set.

The choice of data representation plays a significant role
in the success of the performance of machine learning algo-
rithms. In other words, learning proper representations facili-
tates solving the task by extracting the most relevant and useful
feature points to train the desired algorithm. Moreover, repre-
sentation learning is heavily reliant on the training data. This
can be seen from the drop in similarity values when predicting
on the test set.

3.2 Aortic Root Reconstruction

Figure 2 shows three reconstructed aortic root images. For
qualitative analysis, the images are compared with the ground
truth and the pathological (dilated) states.

The changes in shape and size attributes can be clearly ob-
served in the reconstructed images. The distorted shape caused
by the dilation has disappeared. Instead, the images show
smoother geometries without losing the anatomical properties
of the aortic root. Despite splitting the dataset, the model still
shows potentials in generating meaningful images when new
unseen images are introduced. The similarity results between

Fig. 2: Visualization of three reconstructed images compared with
the dilated and healthy states. The first row is obtained from the
training set, and the rest is from the test set.

Tab. 2: Quantitative results for the similarity between the gener-
ated aortic root and the ground truth based on MSE and SSIM
metrics.

MSE SSIM

Pathological vs. Healthy 1566 0.766
Reconstruction vs. Healthy

(Training set) 1039 ± 129 0.801 ± 0.009
Reconstruction vs. Healthy

(Test set) 915 ± 448 0.79 ± 0.03

the predicted aortic root images and the ground truth healthy
valves images are recorded in table 2.

The achieved results are far from the optimum. However,
based on the results between the training and testing sets, the
model is still able to maintain a good generalization when pro-
vided with new images.

3.3 Evaluation of Various Architectures

Figure 3 demonstrates the relationship between the depth and
structural similarity index for different latent space sizes. Four
architectures have been used in this comparison. A1 represents
a network with 3 convolutional layers in the encoder, A2 has
4 convolutional layers, A3 (the proposed architecture) has 5
convolutional layers, and A4 has 6 convolutional layers. The
decoder is the mirrored architecture of each relevant encoder.
Increasing the network depth does not seem to improve the ac-
curacy of reconstructing the aortic root. With a small dataset
size, taking into account the increase in the number of nodes
with depth, adding more layers would only contribute to a
higher number of hyperparameters; consequently, the model is
more likely to overfit. On the other hand, using shallow archi-
tectures, for example, three convolutional layers in the encoder
and similarly for the decoder, resulted in the lowest similarity
index values compared to other depth choices. In terms of la-
tent space size, using eight nodes was not sufficient to capture

Fig. 3: Comparison between various architectures with different
latent space sizes
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Fig. 4: Bar graph depicting the SSIM values of four different mod-
els based on their performance in representation learning and
reconstructing the healthy aortic root.

the features necessary to provide optimal input retrieval. By
fixing the latent space size to 16 neurons as in the proposed
architecture, the model provides the highest similarity among
other options.

3.4 Comparison to State-of-the-Art
Models

The results of this study have also been compared with pre-
vious related works. Figure 4 displays a bar graph comparing
the SSIM values of four different models when performing the
above tasks The first model uses a standard autoencoder AE
with convolutional layers. The second one represents a stan-
dard variational autoencoder VAE both with a manually de-
signed translation vector in the latent space. The next model is
the one proposed by Hagenah et al. [5]. The last model is our
proposed model CVAE.

The primary downside with standard autoencoders is the
noncontinuous distribution of the latent space, which makes
it challenging to generate new realistic images when drawing
new samples from the latent space. Nevertheless, in variational
autoencoder, new images are sampled from a Gaussian distri-
bution over the latent space, therefore, resulting in smooth im-
ages. Despite that CVAE does not show ideal performance in
reconstructing the healthy aortic root, the important point is
that the reached accuracy is comparable to the previously pub-
lished method without any kind of manual deformation model-
ing. These results indicate that a CVAE is capable of learning
the deformation completely data-driven and no human bias has
to be introduced.

4 Conclusion

In this study, we proposed a novel, end-to-end automatized ap-
proach for reconstructing the healthy aortic root using a Con-
ditional Variational Autoencoder. The proposed model showed
strong performance in generating new images based on chang-
ing the label of the latent space of the dilated images. Fur-
ther experiments could employ transfer learning to address the
problem with the small dataset.
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