Daniel-Sebastian Dohle. Thomas Zumbrink. Michael Meißner and Herbert P. Jennissen*

Protein Adsorption Hysteresis and Transient States of Fibrinogen and BMP-2 as Model Mechanisms for Proteome-Binding to Implants

Abstract: Protein adsorption studies returned to the focus of medical therapeutics, when it was found that up to 2500 non-plasma proteins adsorbed to hip implants during arthroplastic surgery, challenging peri-implant healing models. Ouestions have re-emerged as to the implications of uncontrolled protein unfolding after adsorption. In past studies on the cooperativity of protein binding we discovered protein adsorption hysteresis, a thermodynamically irreversible process. The present precursory study comprises real-time kinetic (TIRF-Rheometry) and equilibrium (125I-tracer) studies on the hysteretic binding of fibrinogen and rhBMP-2 to titanium and glass surfaces via transient states. Thermodynamic constants (ΔGO"), as well as kinetically derived (K'_A) and hysteresis derived (K'_{HA}) association constants in the range of 10⁶ to 10¹² M⁻¹ lead to a consistent picture.

Keywords: adsorption and desorption isotherms, total internal reflection fluorescence (TIRF), TIRF-rheometry, binding constants, Hill constants, on-rate (k_{+1}) , off-rate (k_{-1})

https://doi.org/10.1515/cdbme-2020-3046

Introduction 1

Recently we published the proteomic composition (implantome) of the first protein layer on hip implant shafts intra-surgically retrieved after 2 min for the first time [1,2]. The implantome consisted of 2802 protein entities. The adsorption of proteins on surfaces generally occurs in the form of an adsorption-desorption hysteresis loop [3,4]. The desorption isotherm does not retrace the adsorption isotherm as a result of thermodynamic irreversibility. In the two-state domain model of a hysteresis cycle the apparent binding constants (K'_A) for the adsorption and desorption branches

*Corresponding author:

Prof. Dr. H. P. Jennissen, Institut für Physiologische Chemie, und am Lehrstuhl Orthopädie und Unfallchirurgie, Universität Duisburg-Essen, Universitätsklinikum Essen, Hufelandstr. 55, D-45122 Essen, Germany; Email: hp.jennissen@uni-due.de

Daniel-S. Dohle^{1,2}, Thomas Zmbrink¹ and Michael Meißner¹ ¹Institut für Physiologische Chemie, AG Biochemische Endokrinologie ²Klinik und Poliklinik für HTG-Chirurgie, Universität Mainz, D-55131 Mainz, Germany

of the hysteresis loop can be calculated. The evaluation of hysteretic data is based on the model-assumption that the long-lived metastable states of the local energy minima can be treated thermodynamically as true equilibria ([5]).

2 **Materials and Methods**

Proteins. Bovine fibrinogen (m = 340 kDa [6]; 95-98% clottability) was purified from frozen bovine blood plasma by classical means as described in [6] and stored at -80°C. Human fibrinogen (95-98% clottability) was purified from human blood plasma by critical hydrophobicity hydrophobic interaction chromatography (HIC) in one step [6]. Recombinant human bone morphogenetic protein (rhBMP-2; m = 26 kDa [10]) was prepared in E. coli [7,8] with a biological activity equivalent (K'_{0.5}) of 2-10 nM [9,10].

Batch Measurements on titanium miniplates. Electrolytically polished titanium miniplates (5 x 10 x 1 mm) were cleaned with acetone as described (advancing contact angle 70-80°) [11]. Human fibringen was radioactively labelled by ¹²⁵I according to McFarlane [12] and stored at -80°C. As shown by Schmitt et al. [13] 125I fibringen labelled by the iodine monochloride method shows no preferential adsorption in comparison to the non-labelled species.

Adsorption isotherms (Langmuir and Freundlich types) [3] were determined in buffer A (50 mM Tris, 150 mM NaCl, 1 mM EDTA, pH 7.4) by incubation of acetone treated miniplates in solutions of increasing 125I-fibringen concentrations until apparent adsorption equilibrium after 12 hours and measuring the bound radioactive fibringen.

For desorption isotherms 125I-fibrinogen loaded miniplates were incubated in defined volumes (2-200 ml) of sterile buffer A solutions for 48 hours to apparent desorption equilibrium at decreasing concentrations followed by analysis of residually bound 125I-fibringen. The Freundlich isotherms were converted to the Hill isotherms [3] and the half-saturation constant K_{HD} (= $K_{0.5}$) was calculated from the Hill constant according to $K_H = (K_{0.5})^{n_H}$ [3]. The reciprocal of K_{HD} [M] is the here employed association constant K_{HA} [M⁻¹]. In the desorption kinetic studies readsorption was prevented by a continous flow-through system.

TIRF-Rheometer [14] analysis on quartz glass. Highly polished quartz glass discs (Suprasil I, Ra ~1-3 nm, \emptyset = 36 mm, 0.9 mm thick) were cleaned in chromosulfuric acid (CSA) as described (θ_{Adv} = 0-10°) [15]. Kinetic measurements of bovine fibrinogen (95-98% clottability) were performed in **buffer A** by total internal reflection fluorescence (TIRF) utilizing the air-bubble technique (BLEB [16]) in a flow-through TIRF-Rheometer cell [15,16], employing a Spex Fluorolog spectrometer Model F112 (Instruments SA, München) with a xenon lamp (excitation: λ = 290 nm, emission: λ = 350 nm) for analysis of tryptophan fluorescence [15]. Solutions of rhBMP-2 (e.g. 0.1 mg/ml, 3.8μM) were adsorbed and desorbed in 50 M sodium acetate buffer, pH = 4.5 (**buffer B**). After obtaining adsorption equilibrium in ca. 5 min rhBMP-2 was desorbed for 20 h.

The resulting exponential adsorption kinetics at increasing concentrations yield a series of observed rate constants (k_{obs}) from which the on-rate (k_{+1}) and off-rate (k_{-1}) constants can be calculated. Since the observed transient protein states are metastable [3,4] the derived constants are labeled as "apparent" by (') [3] e.g. K' as K-prime.

<u>Thermodynamic</u> <u>evaluation</u>. Long-lived metastable states, corresponding to local energy minima, can be treated thermodynamically as true equilibria (see [3,5]), allowing the calculation of apparent standard Gibbs free energies (double prime): $\Delta G^{O"} = -RT \ln K' (R = 8.314472 \text{ J/K}^{-1} \text{ mol}^{-1}; \text{ absolute Temperature T} = 298 \text{ K} (= RT 25 °C); the ln of the constants K'_A, K'_{HA}. For curve fitting and statistical analysis the PC program Graphpad Prism Vers. 4. was employed.$

3 Results and Discussion

3.1 Adsorption Hysteresis of ¹²⁵l-Fibrinogen on Titanium Miniplates

Although adsorption isotherms of fibrinogen on titanium and glass can often be fitted to hyperbolas [17], they are not true Langmuir isotherms, since the fundamental postulates of Langmuir are not fulfilled [18,19]. In Fig. 1A one adsorption isotherm (solid symbols) and three desorption isotherms (open symbols, so-called scanning curves) of fibrinogen hysteresis on miniplates are shown in a double log plot as Freundlich isotherms (no chemisorption as in [17]). The desorption isotherms originate at the upper closure point (special symbols). For the adsorption isotherm a $K_{HA}^{A} = 2.6 \times 10^6 M^{-1}$ and for the top desorption isotherm a $K_{HA}^{D} = 2.9 \times 10^{11} M^{-1}$ are obtained. In Fig. 1B two first order off-rate constants of a two-phase exponential desorption ($k_{-1} = 1.2 \times 10^{-5} \text{ s}^{-1}$ and $k_{-2} =$ 2.6 x 10⁻⁷ s⁻¹) are derived. It is assumed, that the uncertainty in calculating the apparent binding constants (K'A) from the on-rate constant on polished glass (Fig. 2) and the off-rate constants on polished titanium (Fig. 1B) is tolerable. The

constants derived from **Fig. 1** are shown in **Table 1** indicating four transient states. From the difference of the two app. standard Gibbs free energies of adsorption ($\Delta G_a^{OII} = -36.0 \text{ kJ mol}^{-1}$) and desorption ($\Delta G_d^{OII} = -64.3 \text{ kJ mol}^{-1}$) an

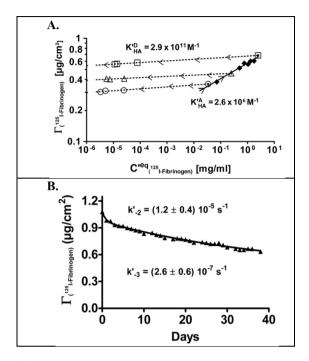


Fig. 1
Protein adsorption-desorption hysteresis of ¹²⁵I-fibrinogen at apparent equilibria and release kinetics on titanium miniplates. A. Adsorption isotherm (\spadesuit) and (\boxdot · \blacksquare · \triangle), arrows upward Desorption isotherms (\boxdot · \blacksquare · \triangle), arrows downward upper closure points (\boxdot · \blacksquare · \triangle); \varGamma : surface concentration B. Desorption kinetics of ¹²⁵I-fibrinogen from titanium miniplates fitted to a two-phase exponential equation. For further details and constants see Table 1, Methods and ref. [3]. irreversible change of \triangle iG^O^{III} = -28.3 kJ mol⁻¹ can be calculated, the energy cost of multivalence-caused conformational change. For the difference of the transient states 03 and 04

 Table 1

 Equilibrium and kinetic constants derived from Fig. 1.

¹²⁵ I-Fibrinogen (Adsorption-Desorption Hysteresis)						
Sorption States	k' ₊₁ M ⁻¹ s ⁻¹	k' _{off} s ⁻¹	K' _{HA} K' _A M ⁻¹	ΔG ^O '' kJmol ⁻¹		
State 01 (Fig. 1A)	-	-	2.6 x 10 ⁶	-36.0		
State 02 (Fig. 1A)	1	1	2.9 x 10 ¹¹	-64.3		
State 03 (Fig. 1B)	$3.4 \pm 0.5^{*}$ $x 10^{5}$	1.2 ± 0.4 x 10^{-5}	2.8 x 10 ¹⁰	-58.6		
State 04 (Fig. 1B)	$3.4 \pm 0.5^{*}$ $x \ 10^{5}$	2.6 ± 0.6 x 10^{-7}	1.3 x 10 ¹²	-68.0		

^{*}On-rate constants of **Fig. 2A**.; mean \pm S.D.

(**Table 1**) an apparent dissipated Gibbs free energy of $\Delta i G^{Oii} = -9.4 \text{ kJ mol}^{-1}$ is obtained. The $\Delta G_d^{Oii} = -58.6 \text{ kJ mol}^{-1}$ (298 K) of state 03 is in good agreement with the voltammogramic values of $\Delta G^O_{ADS} = -54.2 \text{ kJ mol}^{-1}$ (310 K) in [17]. In comparison the hydrolysis of ATP yields $\Delta G^{Oi} \sim -30 \text{ kJ mol}^{-1}$.

3.2 Evanescent Wave Kinetics of Fibrinogen on Quartz Glass

In **Fig. 2A** the k_{obs} -values derived from separate exponential adsorption kinetics of fibrinogen on quartz glass via TIRF-rheometry (see [15]) are plotted as a linear function versus the initial fibrinogen concentration. The apparent onrate constant $k'_{+1} = 3.4 \times 10^5 \text{ M}^{-1}\text{s}^{-1}$ [15] is obtained from increment and the off-rate constant ($k'_{-1} = 8.1 \times 10^{-2}$) from the intersect with the ordinate. The on-rate constant (k'_{+1}) also allows an unbiased calculation of the binding constants from the off-rate constants of **Fig. 2B** (see **Table 2**). It appears that the final affinity of fibrinogen for the titanium surface (**Table 1**) is ca. one order of magnitude higher than for glass. The affinity of fibrinogen in state 01 with a binding constant

Fig. 2

Determination of apparent adsorption and desorption rate constants of fibrinogen on quartz glass by TIRF-Rheometry.

A. k_{obs}-plot for the determination of k'₊₁ and k'₋₁ of the initial complex. Dashed lines: boundaries for 95% confidence.

B. The two-phase exponential desorption from the quartz glass was measured by TIRF under conditions of minimal bleaching and correction of quenching (A. from ref. [15]).

Table 2

<u>Equilibrium and kinetic constants for three fibrinogen</u> <u>transient states on quartz glass as measured by evanescent</u> <u>wave technology [15] derived from Fig. 2.*</u>

Fibrinogen (TIRF-Rheometry)						
Sorption States	k' ₊₁ M ⁻¹ s ⁻¹	k' ₋₁ s ⁻¹	K' _A M ⁻¹	ΔG ^O '' kJmol ⁻¹		
State 01 (Fig. 2A)	$3.4 \pm 0.5 \\ x \ 10^5$	$8.1 \pm 0.02 \\ x \ 10^{-2}$	4.1 x 10 ⁶	-37.1		
State 02 (Fig. 1B)	3.4 ± 0.5 x 10^5	2.0 ± 0.6 x 10^{-4}	1.7 x 10 ⁹	-51.8		
State 03 (Fig. 2B)	$3.4 \pm 0.5 \\ x \ 10^5$	5.9 ± 3.0 x 10^{-6}	5.7 x 10 ¹⁰	-60.4		

 $mean \pm S.D.$

of 4.1×10^6 M⁻¹ increases versus state 02 by over two-orders of magnitude with a $\Delta iG^{Ou} = -14.7$ kJ mol⁻¹ and versus state

3.3 Evanescent Wave Kinetics of rhBMP-2 on Quartz Glass

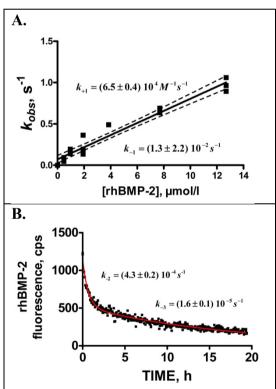


Fig. 3

Determination of apparent adsorption and desorption rate constants of rhBMP-2 on quartz glass by TIRF-Rheometry.

A. k_{obs}-plot for the determination of k'₊₁ and k'₋₁ of the initial complex. Dashed lines: boundaries for 95% confidence.

B. Two-phase exponential desorption of rhBMP-2 in quartz glass TIRF-cell after 5 min in residence following saturating

exponential adsorption (~50 s) under conditions of minimal

bleaching and correction of quenching (see ref. [15]).

03 by another order of magnitude $\Delta iG^{O"} = -8.6 \text{ kJMol}^{-1}$. Thus three transient states of fibrinogen cover ca. four orders of magnitude at a cost of ca. $\Delta iG^{O"} = -23.3 \text{ kJ mol}^{-1}$. The values of $\Delta G^{O"} = -52$ to -60 kJ mol^{-1} (**Table 2**) are in good agreement with the voltammogramic $\Delta G^{O}_{ADS} = -52$ to -55 kJ mol^{-1} [17].

A kinetic analysis of the adsorption of rhBMP-2 on quartz glass is shown in **Fig. 3**. This is of interest since rhBMP-2 has been adsorbed on titanium surfaces for the preparation of successful bioactive implants in sheep [7]. The cystine-knotted BMP-2 molecule might resist adsorption hysteresis and possibly unfolding on surfaces. As derived from **Fig. 3** and **Table 3**, the rhBMP-2 molecule runs through similar transient states 01 and 02 ($\Delta iG^{OII} = -8.3 \text{ kJ mol}^{-1}$) followed by states 02 and 03 ($\Delta iG^{OIII} = -5.4 \text{ kJMol}^{-1}$) with affinities over three orders of magnitude similar to fibrinogen. A $\Delta G^{OIII} = -51.3 \text{ kJ mol}^{-1}$ compares to ca. 13 H-bonds. Referable adsorption rate constants for proteins of $k_{on} \sim 10^5 \text{ M}^{-1} \text{ s}^{-1}$ were published by Aptel et al. [20]. Desorption rate constants in the range of $10^{-4} - 10^{-6} \text{ s}^{-1}$ have been reported by Huetz et al. [21].

Table 3

Equilibrium and kinetic constants derived from Fig. 3*.

rhBMP-2 (TIRF-Rheometry)						
Sorption States	k' ₊₁ M ⁻¹ s ⁻¹	k' ₋₁ s ⁻¹	K' _A M ⁻¹	ΔG ^O '' kJ mol ⁻¹		
State 01 (Fig. 3A)	6.5 ± 0.4 $\times 10^4$	1.3 ± 2.2 x 10^{-2}	5.0 x 10 ⁶	-37.6		
State 02 (Fig. 3B)	6.5 ± 0.4 x 10^4	4.3 ± 0.2 x 10^{-4}	1.5 x 10 ⁸	-45.9		
State 03 (Fig. 3B)	6.5 ± 0.4 x 10^4	1.6 ± 0.1 x 10^{-5}	1.4 x 10 ⁹	-51.3		

* $mean \pm S.D.$

Acknowledgements

The support of the Deutsche Forschungsgemeinschaft (DFG Reference No. Je84/15-3) is gratefully acknowledged.

Author Statement

The Authors state no conflict of interest.

4 References

- [1] Jäger, M., Jennissen, H. P., Haversath, M., Busch, A., Grupp, T., Sowislok, A., & Herten, M. (2019) Intra-surgical Protein Layer on Titanium Arthroplasty Explants: From the Big Twelve To The Implant Proteome. *Proteomics. Clin. Appl.*, e1800168 (pp. 1-16); (DOI: 10.1002/prca.201800168).
- [2] Jennissen, H. P. (2019) Implantomics: A Paradigm Shift in Implantology. *Curr. Dir. Biomed. Engineer.*, **5**, 131-136.
- [3] Jennissen, H. P. & Botzet, G. (1979) Protein binding to twodimensional hydrophobic binding-site lattices: Adsorption hysteresis on immobilized butyl-residues. *Int J Biol Macromol*, 1, 171-179.
- [4] Jennissen,H.P. (1985) Protein Adsorption Hysteresis. In "Surface and Interfacial Aspects of Biomedical Polymers" Vol.2,

- Protein Adsorption (Andrade, J.D., ed), pp. 295-320. Plenum Press. New York.
- [5] Katchalsky, A. & Spangler, R. (1968) Dynamics of membrane processes. Quart. Rev. Biophys., 1, 127-175.
- [6] Jennissen, H. P. & Demiroglou, A. (2006) Interaction of fibrinogen with n-alkylagaroses and its purification by critical hydrophobicity hydrophobic interaction chromatograpy. *J Chromatogr. A*, **1109**, 197-213.
- [7] Chatzinikolaidou, M., Lichtinger, T. K., Müller, R. T., & Jennissen, H. P. (2010) Peri-implant reactivity and osteoinductive potential of immobilized rhBMP-2 on titanium carriers. *Acta Biomater.*, 6, 4405-4421.
- [8] Jennissen, H. P., Zumbrink, T., Chatzinikolaidou, M., & Steppuhn, J. (1999) Biocoating of Implants with Mediator Molecules: Surface Enhancement of Metals by Treatment with Chromosulfuric Acid. *Materialwiss. Werkstofftech. (Mater. Sci. Eng. Technol.*), 30, 838-845.
- [9] Wiemann, M., Rumpf, H. M., Bingmann, D., & Jennissen, H. P. (2001) The Binding of rhBMP-2 to the Receptors of viable MC3T3 Cells and the Question of Cooperativity. *Materialwiss. Werkstofftech. (Mat. Sci. Engineer. Technol.*), 32, 931-936.
- [10] Laub, M., Chatzinikolaidou, M., & Jennissen, H. P. (2007) Aspects of BMP-2 Binding to Receptors and Collagen: Influence of Cell Senescence on Receptor Binding and Absence of High-Affinity Stoichiometric Binding to Collagen. *Materialwiss. Werkstofftech. (Mat. Sci. Engineer. Technol.)*, 38, 1020-1026.
- [11] Chatzinikolaidou, M., Laub, M., Rumpf, H. M., & Jennissen, H. P. (2002) Biocoating of Electropolished and Ultra-Hydrophilic Titanium and Cobalt Chromium Molybdenium Alloy Surfaces with Proteins. *Materialwiss. Werkstofftech. (Mater. Sci. Eng. Technol.*), 33, 720-727.
- [12] McFarlane, A. S. (1963) In Vivo Behavior of I-Fibrinogen. J Clin. Invest, 42, 346-361.
- [13] Schmitt, A., Varoqui, R., Uniyal, S., Brash, J. L., & Pusineri, C. (1983) Interaction of fibrinogen with solid surfaces of varying charge and hydrophobic-hydrophilic balance. *Journal of Colloid* and Interface Science, 92, 25-34.
- [14] Jennissen, H. P., Sanders, A., Schnittler, H. J., & Hlady, V. (1999) TIRF-Rheometer for Measuring Protein Adsorption Under High Shear Rates:Constructional and Fluid Dynamic Aspects. *Materialwiss. Werkstofftech. (Mater. Sci. Eng. Technol)*, 30, 850-861.
- [15] Jennissen, H. P. & Zumbrink, T. (2004) A Novel Nanolayer Biosensor Principle. Biosens. Bioelectron., 19, 987-997.
- [16] Jennissen, H. P. (2005) Boundary-Layer Exchange by Bubble: A Novel Method for Generating Transient Nanofluidic Layers. *Physics of Fluids*, **17**, 100616-1-100616-9.
- [17] Jackson, D. R., Omanovic, S., & Roscoe, S. G. (2000) Electrochemical Studies of the Adsorption Behavior of Serum Proteins on Titanium. *Langmuir*, 16, 5449-5457.
- [18] Langmuir, I. (1940) Monolayers on solids. J Chem Soc London, 1940, 511-543.
- [19] Jennissen, H. P. (1981) Immobilization of residues on agarose gels: Effects on protein adsorption isotherms and chromatographic parameters. J Chromatogr, 215, 73-85.
- [20] Aptel, J.D., Carroy, A., Dejardin, P., Pefferkorn, E., Schaaf, P., Schmitt, A., Varoqui, R., & Voegel, J.C. (1987) Adsorption and Desorption of Synthetic and Biological Macromolecules at Solid-Liquid Interfaces: Equilibrium and Kinetic Properties. In Proteins at Interfaces: Physicochemical and biochemical Studies, ACS Symposium Series 343 (Brash, J.L. & Horbett, T.A., eds), pp. 222-238.
- [21] Huetz, P. H., Ball, V., Voegel, J. C., & Schaaf, P. (1995) Exchange Kinetics for a Heterogeneous Protein System on a Solid Surface. *Langmuir*, 11, 3145-31.