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Abstract: Laparoscopic surgery consists of many tasks
that have to be handled by the surgeon and the operating
room personnel. Recognition of situations where action is
required enables automatic handling by the integrated OR
or notifying the surgical team with a visual reminder. As a
byproduct of some surgical actions, electrosurgical smoke
needs to be evacuated to keep the vision clear for the sur-
geon. Building on the success of convolutional neural
networks (CNNs) for image classification, we utilize them
for image based detection of surgical smoke. As a baseline
we provide results for an image classifier trained on the
publicly available smoke annotions of the Cholec80 data-
set. We extend this evaluation with a self-training
approach using teacher and student models. A teacher
model is created with the labeled dataset and used to create
pseudo labels. Multiple datasets with pseudo labels are
then used to improve robustness and accuracy of a noisy
student model. The experimental evaluation shows a per-
formance benefit when utilizing increasing amounts of
pseudo-labeled data. The state of the art with a classifica-
tion accuracy of 0.71 can be improved to an accuracy of
0.85. Surgical data science often has to cope with minimal
amounts of labeled data. This work proposes a method to
utilize unlabeled data from the same domain. The good
performance in standard metrics also shows the suitability
for clinical use.
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Introduction

A surgeon has many tasks which require manual inter-
vention and focused attention. Automation of such tasks
can alleviate the burden on surgeons and allow their
attention to stay on more important topics. One such task is
manual smoke evacuation. Correct handling of surgical
smoke consists of multiple steps and would profit highly
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from automation. Surgical smoke is a byproduct of coag-
ulation tools like the high-frequency electrosurgical unit or
coagulating shears. It diminishes the quality of the endo-
scopic vision with increasing intensity and must be
removed from the body. Smoke evacuation must be
accompanied by an increase of gas flow into the body to
keep the pressure in the cavity constant. Additionally the
evacuation is best handled by a specific device to avoid
health risks to the surgical staff [3]. Aside from this intra-
operative uses of smoke detection, there also exist various
postoperative applications for recording analysis. Large
amounts of smoke in a recording may indicate surgical
errors due to the deteriorated quality of the endoscopic
vision. The automatic localization of smoke in recordings
can also help to navigate through the vast amounts of re-
cordings that hospitals have to store. A large amount of
research on automatic smoke detection focuses on the
more general fire and smoke detection in outdoor videos.
[4] applies convolutional neural networks (CNNs) for fire
classification. The work in [5] uses the Faster R-CNN object
detection model to determine the location of smoke and fire
in images. The authors also try to overcome the lack of data
with synthetic smoke images. In the surgical domain few
works exist on the subject of automatic smoke detection.
Manually extracted features of laparoscopic recordings
lead to very good results with a SVM classifier in [6]. This
work evaluates smoke detection on only four recordings
and reports metrics on a testset randomly sampled from all
data. Another SVM based algorithm is used in [7] with good
results. This work also suffers from the very limited dataset
of only 76 extracted clips with less than 5,000 frames in
total. The work in [8] evaluates a histogram method based
on colorspace features as well as a pretrained GoogleNet
CNN on a non-public dataset with 30,000 images. The
same authors published smoke annotations for parts of the
cholec80 dataset [9] together with new evaluations in [1].
To overcome the lack of available training data for surgical
data science in endoscopy several works evaluated the use
of unlabeled recordings for surgical workflow analysis [10]
or instrument segmentation [11]. The work in [2] utilizes
large amounts of unlabeled data with a pseudo-labeling
approach to improve a noisy student model. A teacher
model is trained in a supervised way and used to create
pseudo labels for the unlabeled data.
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This work evaluates the use of pseudo-labeled data to
improve the state of the art in smoke detection with CNNs.
Student models are learned iteratively with increased ca-
pacity to achieve knowledge expansion. Input and model
noise is applied to the student model increasing the range
of learnable invariants. This algorithm is used iteratively to
get the most out of the available data.

Materials

This work uses the following datasets: The cholec80 dataset [9] with
the public smoke annotations from [1] referred to as dataset I, the part
of cholec80 without annotations as dataset II and a non-public un-
labeled dataset showing similar laparoscopic procedures designated
dataset III. The available smoke annotations have been created on a
subset of the cholec80 dataset extracted at 25 frames per second. The
roughly 100,000 annotated frames of this dataset show minimal
variation in parts due to this high framerate. Extracting test and
validation datasets with random sampling would therefore lead to
information leakage and unrealistic high metrics. This makes it
necessary to choose the validation and test subsets from different
videos to show a more realistic generalization error. Sixty videos are
used for the training set, and 10 videos each for validation and test.
This results in 75,622 images for training and the rest for validation and
test. For the unlabeled part of the cholec80 dataset pseudo labels are
created at one frame per second. This gives 159,440 additional images.
Pseudo labels for the non-public dataset are created in the same way
for 257,611 images.

A rectangular area is cropped from the center of the cholec80
images to reduce the influence of the dark circle as used in [1]. The
images of both datasets are cropped to the same aspect ratio, resized to
square images with size 256 by 256 pixels. Finally data augmentations
are applied and the image data is normalized to the range [-1, 1].

Methods

We compare the two best performing methods, Saturation Peak
Analysis (SPA) and classification with a CNN, from [1] which represent
the state of the art with different noisy student models.

State of the art

For the SPA a histogram of the saturation channel of HSV images is
calculated. Peaks in the histogram that stretch over multiple histo-
gram bins and reach over an empirically determined threshold are
used as features in the analysis. A classification threshold separating
high from low saturation values, again found empirically, is then used
to classify the images in the classes smoke and non-smoke [8].

The best performing method presented in [8], is a CNN classifier
based on the GoogleNet-Architecture. It is trained on 80% of the class-
balanced dataset starting with pretrained weights. Evaluated inputs
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are RGB images and saturation-channel only HSV images, where the
former perform better by a small margin.

Noisy student model

The self-training of a noisy student model as introduced in [2] is based
on the idea of utilizing large amounts of unlabeled data to augment a
smaller labeled dataset. As a first step a teacher model is trained on the
labeled data and used to create predictions for the unlabeled data.
These pseudo labels are then subsequently used to train a student
model on the combined datasets, hand-labeled and pseudo-labeled.
This training-procedure successfully improved the state of the art in
the ImageNet challenge using 300 million unlabeled images showing
improvements especially in the robustness of the classifier.

We apply this self-training approach to the problem of
smoke-detection. DenseNet is chosen as model architecture, since
ImageNet pretrained weights for various model sizes are avail-
able. This ability to scale the network size is needed to apply the
concept of knowledge expansion: the student model, trained on
more data, is larger than the teacher. The student is thought to
achieve better results through more training data and a more
difficult target function due to the applied noise [2]. For the
teacher model we choose DenseNet121. The student is evaluated
with network sizes DenseNet121 and DenseNet169. Classification
heads of pretrained models are replaced with a global average
pooling layer, followed by a fully connected linear layer with
dimensionality 4096 and another one with dimensionality two.
The linear layers are separated by ReLu non-linearities. Model
noise is added with dropout functions between the newly added
linear layers. Aside from its ability to improve generalization, this
noise improves local smoothness in the decision function when
used together with unlabeled data. This enables a more coherent
clustering of the inputs with the hand-labeled inputs providing for
the correct cluster assignment of the output vectors [12]. Addi-
tionally the input of the model is noised with data augmentation
acting as invariance constraints for small perturbations. Random
rotations, center crops and color perturbations of the HSV-image
channels are applied with a probability of 50%. The created
pseudo labels are reduced with confidence based subsampling.
The softmax-activated outputs of the teacher model are inter-
preted as confidence values and all samples with a confidence
lower than 0.75 are discarded from the training. Overrepresented
classes in the pseudo-labeled dataset are further reduced to
achieve class balance. To allow the model to better fit the pseudo-
labeled training data, the ratio of pseudo-labeled to hand-labeled
data is increased in favor of the former. This training procedure is
then repeated 3 times. Each iteration leading to larger datasets
due to increased confidence on the unlabeled data. Datasets II
and III are subsampled to approximately 50 and 62% in the first
two iterations. In the third iteration 75% of dataset II and 80% of
dataset III are used for training.

Results and discussion

The top two rows of Table 1 show the metrics for the state of
the art, taken from [1]. SPA in the third line shows the
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results on the testset for our own reimplementation of this
algorithm: results are very near to the original, higher
precision suggests a reduced number of false positives, the
lower recall an increased number of false negatives. Row
four shows the testset metrics for the teacher model (D121).
It shows an increase in all metrics compared to GoogleNet
(GLN RGB) due to the modernized neural network
architecture.

To evaluate the noisy student algorithm the datasets
were used as follows. Dataset I, the part of the cholec80
dataset with public smoke annotations is used to train the
teacher model. The student models were trained with
datasets I, II and III. Dataset II, the unlabeled part of
cholec80 with pseudo labels. And dataset III, the non-
public dataset with pseudo-labels.

Table 2 shows student models, of both sizes, trained
on two of the three datasets: dataset I and II or dataset I
and III. It can be seen that using any one of both pseudo-
labeled datasets improves performance compared to the
teacher model by approximately the same margin. The
numbers also show, that larger student models trained on
two of the datasets perform slightly worse than a same-
sized student.

Finally Table 3 shows the results for student models
trained on all three datasets. Utilising more pseudo-
labeled data shows an improvement for the larger
models (D169) over the small students (D121) by a small
margin. The ratio of pseudo-labeled samples is further
increased for the models in the last two rows. The D121
model (penultimate row) shows almost no change in
metrics after this change of ratios, except a small sub-
stitution of false negative and false positive samples.
This leads to an increase of precision and a decrease of
the recall metric. The D169 model (last row) on the
other hand shows distinct improvements. Accuracy,
precision and f1 metrics show an increase, with only

Table 1: Results showing the accuracy, precision, recall and F1
metrics for the baseline models. Metrics for DenseNet121 teacher
model are listed in row D121 (DenseNet121). Rows 1 and 2 show
results on DS C.2 from [1]. Models in rows 3 and 4 are trained and
evaluated on dataset I.
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Table 2: Student model results for D121 and D169 (DenseNet169)
utilising one pseudo-labeled dataset. Dataset-ratios are stated after
the model-name in the order: I/1I/IIl.

Model Acc Prec Rec F1
D121 0.2/0.8/0 0.814 0.882 0.767 0.820
D121 0.2/0/0.8 0.804 0.849 0.767 0.806
D169 0.2/0.8/0 0.810 0.840 0.781 0.809
D169 0.2/0/0.8 0.808 0.896 0.751 0.817

recall being in the same range as the others or slightly
lower than the first model. A nearly constant recall
metric is an indication that the number of false nega-
tives for this best model stays approximately the same.
Meaning that the recognition of the most difficult ex-
amples is not improved by much. Whereas the growth
of the other metrics points to a decrease in the number
of false positives. In other words, the reduction of false
positives suggests less overfitting, meaning better
generalization.

Figure 1 depicts results for the best model. False
negatives in the first row containing low amounts of
smoke, making it hard to recognize even for the human
eye. The second row shows smoke-free images that
were wrongly determined to contain smoke. The image
on the left shows the typical color distribution of
laparoscopic images, the classifier might have been
fooled by the white discoloration on the tool domi-
nating the bottom right. The image on the right with a
specimen retrieval bag and slightly blurred vision is
most likely misclassified due to these greyish features.
The last row depicts two correctly classified smoke
images. The amount of smoke is high enough that the
human eye can distinguish the smoke even in this small
image size.

Table 3: Student model results utilising both pseudo-labeled
datasets. Dataset-ratios are again stated after the model-name.

Model Acc Prec Rec F1  Model Acc Prec Rec F1
SPA [1] 0.697 0.771 0.560 0.649 D1210.30/0.35/0.35 0.840 0.852 0.821 0.836
GLN RGB [1] 0.711 0.771 0.600 0.675 D169 0.30/0.35/0.35 0.843 0.895 0.801 0.845
SPA 0.688 0.812 0.490 0.612 D1210.10/0.45/0.45 0.840 0.904 0.792 0.845
D121 0.787 0.768 0.785 0.776 D1690.10/0.45/0.45 0.852 0.910 0.807 0.855
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Conclusion

A method for utilising unlabeled endoscopic recordings to
improve smoke detection was proposed. In a first step the
state of the art is improved upon by modernizing the
employed model architecture. The results show that further
improvements can be reached by utilising increasing
amounts of pseudolabeled data and by scaling the network
size accordingly. The prediction of less false positives also
shows that the robustness of the classifier is improved.
While the results are promising there are still many false
negatives in the predictions. Performance on these harder
examples, showing only small amounts of smoke when it is
emerging or during the evacuation might be improved by
using more training data with such edge cases.
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Figure 1: Examples of model predictions. The
rows contain from top to bottom: false
negative, false positive and in the third row
true positive smoke detections.
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