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Abstract: During ultra-high-field magnetic resonance imag-
ing, the acquisition of electrocardiography is impeded by arti-
facts. This poses a challenge in examinations where the QRS
complex is used as a trigger for activating image acquisition.
In this work, we customize a framework for multiscale param-
eter estimation for processing electrocardiography signals ac-
quired inside and outside an ultra-high-field scanner bore: The
parameters of a QRS complex modeled by a Gaussian function
were estimated using scale-dependent algebraic expressions
for 600 heartbeats from three subjects. Sensitivity ≥ 94% and
accuracy ≤ 5ms in each experiment indicate feasibility of this
approach, and, additionally, run time is within the acceptable
range for triggering latency in the majority of cases. Hence, we
see a real-time implementation as an avenue for future work.

Keywords: Magnetic resonance imaging, Electrocardiogra-
phy, Artifacts, Wavelet Transform, Parameter estimation

1 Introduction

Electrocardiography (ECG) is an established diagnostic
method that allows acquisition of detailed information about a
patient’s cardiovascular health status. Acquisition during mag-
netic resonance imaging (MRI) is a long-standing problem due
to susceptibility to noise [8]. Potential noise sources are mag-
netohydrodynamic (MHD) effects, radio-frequency pulses and
activity of the gradient coils. At low field strengths, these ef-
fects can be compensated to a certain degree by making ad-
justments to the experimental setup, e.g. twisting cables [13].
However, these measures are no longer sufficient at ultra-high-
field (UHF) MRI [6].
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Fig. 1: ECG signals acquired A) outside and B) inside a 7T MRI
bore from a healthy volunteer. Each heartbeat is represented by
the sequence P-wave, QRS complex, and T-wave. The QRS com-
plex represents the combination of Q-, R-, and S-wave.

Fig. 1 shows an ECG signal acquired outside and inside
a UHF scanner bore. The latter is deformed by an increased
amplitude of the T-wave, which is a typical MHD artifact [3].
Furthermore, the subtle Q- and S-waves have a reduced ampli-
tude, resulting in a QRS complex similar to a Gaussian func-
tion. These artifacts are not only problematic for patient mon-
itoring, where they can lead to false readings, but also when
ECG is used for activation of image acquisition (”triggering”).
The latency between occurrence of a QRS complex and trigger
activation is critical, with a threshold of approx. 20ms [1].

In the past, several methods have been proposed for ECG
triggering at UHF MRI, often applying a learning phase out-
side the scanner [12] or elaborate ECG hardware [4]; however,
we aim to skip the learning phase and use a single lead from a
basic physiological measurement unit (PMU) instead. The first
is due to decreased examination time and the second is due to
increased utility as a PMU is available at most sites.

Due to the basic ECG hardware, an algorithm robust to
noise is required. In this work we perform an initial feasi-
bility study for detecting QRS complexes in ECG segments
and estimating their parameters using techniques from our re-
cently proposed framework for multiscale parameter estima-
tion (msPE) [5]. Our future aim is an algorithm processing an
ECG signal from the PMU in real-time and triggering image
acquisition each time a QRS complex is detected.
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1.1 Related work

Here, we give a short overview of algorithms for detecting
QRS complexes in ECG signals acquired during MRI. An in-
depth review of these methods is given in [8]. Oster et al.
proposed a QRS detector by applying the continuous wavelet
transform (WT) to ECG signals and using heuristic rules for
the processing of local maxima in the resulting scale-space [9].

Using a learning phase outside of the magnetic field, Gre-
gory et al. proposed using a kernel compiled from 12-lead
ECG measurement [2], and recently Stäb et al. were able to
acquire MRI images successfully using a matched filter ap-
proach [12]. Additionally, Krug et al. proposed using inde-
pendent component analysis [4], and Schmidt et al. proposed
using non-linear filters and higher-order statistics [10].

Recently, we proposed the analytical msPE framework
that makes use of a piecewise Gaussian derivative model [5].

1.2 Mathematical background

In this work, we use a customized implementation of msPE
reduced to a minimum: As the Q- and S-wave of the QRS
complex often vanish due to MHD noise, we use the scale-
dependent algebraic expressions for parameter estimation of a
Gaussian function

𝐺𝜇,𝜎,𝐴,𝐵(𝑡) = 𝐴
1√
2𝜋 𝜎

exp

(︂
− (𝑡− 𝜇)2

2𝜎2

)︂
+𝐵 (1)

instead of using the full Gaussian derivative model. As shown
in Fig. 2A (left), 𝜇 represents the position, 𝐴 the amplitude,
𝐵 a constant baseline and 𝜎 the width of the peak. We assume
this signal is the input function 𝑓(𝑡) of the WT in form of a
differential operator, proposed by Mallat [7]

𝑊𝑇𝑛𝑓(𝑢, 𝑠) = 𝑠𝑛
𝑑𝑛

𝑑𝑢

(︂
𝑓 ⋆ 𝜃𝑠

)︂
(𝑢) (2)

where 𝑠 ∈ R+ is the scale, 𝑛 ∈ N+ denotes the number of
derivatives taken and 𝜃𝑠 is a Gaussian-shaped wavelet. Hence,
(2) is a multiscale representation of the input signal 𝑓(𝑡) that
is convolved with Gaussians of different sizes. With increas-
ing scale 𝑠, the width of the Gaussians increases, which re-
sults in a more intense smoothing effect. In [5] we showed
that finding closed-form solutions for 𝑛 = 1 and 𝑛 = 2 results
in three zero-crossings shown in Fig. 2 (B, left): The first or-
der zero-crossing (𝑢010(𝑠), black curve) represents the peak’s
local maximum and the two zero-crossings of the second order
(left: 𝑢02−1(𝑠), right: 𝑢02+1(𝑠), gray curves) represent the two
inflection points.

At the core of msPE lie equations for estimating the
parameters of 𝐺𝜇,𝜎,𝐴,𝐵 from these zero-crossings. There-
fore, in a nutshell, msPE reduces the problem of character-
izing an input signal to the problem of selecting the correct
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Fig. 2: A) Model (1) and ECG signal acquired during UHF MRI.
B) Representation of signals as zero-crossings after application of
WT operator (2) of order 𝑛 = 1 (black curves) and 𝑛 = 2 (gray
curves). As can be seen, the model is a reasonable approximation
of the QRS complex in both domains (green box).

zero-crossings from scale-space and substituting them into the
equations. Using a suitable scale with low noise then allows
estimation of the parameters with high accuracy.

Parameter 𝜇, representing the peak’s center, can be ob-
tained directly from the central zero-crossing:

𝜇(𝑠) = 𝑢010(𝑠). (3)

The peak’s width is represented by parameter

𝜎(𝑠) = ±
√︂(︀

𝑢02*(𝑠)− 𝜇(𝑠)
)︀2 − 𝑠2

2
. (4)

where 𝑢02*(𝑠) can be 𝑢02−1(𝑠) or 𝑢02+1(𝑠). Parameters 𝐴 and
𝐵 can not be computed from the scale-space representation
(2) and therefore they are computed by using convolution
𝑓𝑐(𝜇, 𝑠) = (𝐺𝜇,𝜎,𝐴,𝐵 ⋆ 𝜃𝑠)(𝑢):

𝐵(𝑠) =
1√
𝜋
√
𝑠

(︃
𝑓𝑐(𝜇, 𝑠)− 𝑓𝑐(𝜇− 𝜎, 𝑠)

exp(1/(𝑠2 + 2𝜎2)𝜎2)− 1
− 𝑓𝑐(𝜇−𝜎, 𝑠)

)︃
(5)

𝐴(𝑠) = −

√︁
2𝜎2

𝑠 + 𝑠
(︁√

𝜋 𝐵
√
𝑠+ 𝑓𝑐(𝜇, 𝑠)

)︁
√
2𝜋 𝜎

. (6)

𝐺𝜇,𝜎,𝐴,𝐵 is only a special case of the more general Gaussian
derivative model and a step-by-step derivation of the model
parameters is provided in [5].

However, as can be seen from Figs. 1 and 2, the QRS com-
plex is not symmetric as is 𝐺𝜇,𝜎,𝐴,𝐵 . Hence, we introduce a
piecewise model by splitting the model at the center 𝜇:

𝐺pw(𝑡) =

{︃
𝐺𝐴,𝜎L,𝜇,𝐵L(𝑡), for 𝑡 < 𝜇

𝐺𝐴,𝜎R,𝜇,𝐵R
(𝑡), for 𝑡 ≥ 𝜇,

(7)

where 𝐴 = 𝐵L +𝐴−𝐵R to make sure that there is a seamless
transition between both sides. This approach allows compu-
tation of the parameters of the model’s left/right side by sub-
stituting the zero-crossings of the 𝑢02−1(𝑠)/𝑢0

2
+1(𝑠) into the

equations.
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2 Materials and Methods

2.1 Study data

We re-analyzed a subset of data from a previous study [11]:
ECG signals (400 Hz sampling rate) were acquired using
the probe provided by the MRI vendor (MAGNETOM 7T;
Siemens GmbH, Erlangen, Germany) connected wirelessly to
the PMU. Data were acquired from three volunteers (27 − 33

years) within two experiments, the first with the patient ta-
ble in home position (≈0.3T) and the second with the table in
the iso-center (7T). MR imaging was not performed, to ensure
that only MHD effects degrade ECG signals. For each experi-
ment, 100 ECG segments (400ms) containing a QRS complex
were delineated manually and, as ground truth, the point in
time when the QRS complex reaches its maximum was stored.

2.2 Algorithm

We propose a basic algorithm taking advantage of properties
shown in Fig. 2: I) Scale-space zero-crossings associated with
model features form uninterrupted lines. Hence, the simple al-
gorithmic task of detecting these lines allows for extracting all
zero-crossings potentially associated with the model. II) The
central 𝑊𝑇 1 line of the model is straight, which allows for
detecting the correct one from all found 𝑊𝑇 1 lines. III) The
smoothing effect increases with scale. This allows for using
higher scales when substituting zero-crossings into the equa-
tions for increased robustness during parameter estimation.
Algorithm summary

In: ECG segment regarded as 𝑓(𝑡).

1. Computation of 𝑊𝑇 1 and 𝑊𝑇 2 of 𝑓(𝑡) for 𝑠 ∈ [1 .. 20].

2. Detection of zero-crossings by cubic spline interpolation.

3. Detection of lines by connecting zero-crossings across all 𝑠.

4. Detection of central zero-crossing line by using 𝑊𝑇 1 zero-
crossing line with minimum variance.

5. Detection of 𝑊𝑇 2 zero-crossing lines next to chosen 𝑊𝑇 1 line.

6. Substitution of the zero-crossings of 𝑊𝑇 1 line into eq. (3) for
𝑠 ∈ [11 .. 20].

7. Substitution of the zero-crossings of left 𝑊𝑇 2 line into the eq.
(4-6) for 𝑠 ∈ [11 .. 20].

8. Substitution of the zero-crossings of right 𝑊𝑇 2 line into the eq.
(4-6) for 𝑠 ∈ [11 .. 20].

9. Application of median() operator to each parameter.

Out: Scalar value for each parameter of 𝐺pw: 𝐴,𝐴,𝜎𝐿/𝑅,𝐵𝐿/𝑅, 𝜇.

2.3 Evaluation methodology

Three measures for evaluating feasibility were computed: For
each processed ECG segment, the run time was stored.

Tab. 1: Results of experiments. Accuracy and processing times
are given as arithmetic mean ± standard deviation (s.d.). Fig. 3
shows corresponding visualizations for subjects I-III at 7 Tesla.

Subj. Tesla Sensitivity [%] Accuracy [ms] Time [ms]

I 0.3 99.0 11.5± 1.8 17.5± 3.4

II 0.3 94.0 3.4± 2.0 16.4± 2.0

III 0.3 98.0 −4.4± 2.6 15.4± 2.5

Average 97.0 3.5± 2.2 16.4± 2.6

I 7.0 95.0 −2.3± 2.7 17.4± 3.0

II 7.0 97.0 8.4± 4.8 16.4± 2.0

III 7.0 95.0 7.8± 2.9 17.5± 2.6

Average 95.7 4.6± 3.5 17.1± 2.6

Furthermore, accuracy was estimated by measuring the
difference between the computed position 𝜇 and the ground
truth. If it was larger than ±50ms, the QRS complex was con-
sidered missed. Sensitivity was defined as the percentage of
detected QRS complexes to all 100 within an experiment.

3 Results

Tab. 1 shows the results averaged for each experiment: As can
be seen, the sensitivity is ≥ 94% for all experiments and aver-
aged mean accuracy is below ≤ 5ms. At 7T, results are only
slightly degraded (mean: +1.1ms s.d.:+1.3ms). Fig. 3 shows
signals from these experiments: As can be seen, the estimated
curves are similar to the shapes of the actual QRS complex,
if the correct central zero-crossing line 𝑢010 is chosen (green
curves). If a wrong 𝑢010 is chosen, results are severely wrong
(magenta curve, indicated by arrow).

An off-the-shelf laptop was used for data processing.
Computation of a single ECG segment took below 20ms on
average, but ±2×s.d. is above 20ms.

4 Conclusion

In this work, we proposed an algorithm for detecting QRS
complexes and estimating their parameters in ECG segments
biased by MHD effects. This work is a feasibility study for our
future aim of triggering MRI image acquisition in real-time.
Using data from three volunteers shows that sensitivity and
accuracy were only slightly downgraded due to MHD noise.

Higher sensitivity has been reported in some related work
(e.g. 99.1% [4]), but elaborate ECG hardware, which is not
available at all MR sites, was used (e.g. 12-lead ECG in [4]).
Our accuracy is better than values reported in [4] (5.8±5.0ms),
but our small sample size and the omittance of aspects that
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Fig. 3: Example results from all subjects at UHF MRI. The QRS complexes are very similar to a Gaussian (subject I), or in proximity to
the T-wave with high amplitude (II), or are followed by a large undershoot (III). The estimated parameters are substituted into the model
function (1) and visualized as green curves when the displacement from the ground truth is within ±50ms or magenta curves otherwise.

would be required for a real-time trigger algorithm, make it
unclear weather the same performance can be expected for ac-
tual MRI triggering within a large cohort. Computation time
was in ≈ 68% of cases below the proposed latency for error-
free MR image acquisition [1].

In future work, run time could be decreased by using
fewer scales, but this requires an in-depth analysis of scale
range vs. accuracy. Missed peaks in most cases result from
a wrongly chosen center line (e.g. Fig. 3 magenta curve). Ap-
parently, using the the straightness of a line is not a robust cri-
terion in the presence of MHD noise, indicating the need for a
more elaborate line classification for improved sensitivity.

In summary, we belive that the results of this feasibility
study warrant the development of a real-time implementation
of msPE for UHF MRI triggering in future work.
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